Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 2 No 8 (2018): Agustus 2018

Peramalan Jumlah Kasus Penyakit Menggunakan Jaringan Saraf Tiruan Backpropagation (Studi Kasus Puskesmas Rogotrunan Lumajang)

Andika Harlan (Fakultas Ilmu Komputer, Universitas Brawijaya)
Budi Darma Setiawan (Fakultas Ilmu Komputer, Universitas Brawijaya)
Marji Marji (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
08 Jan 2018

Abstract

Changes in the number of cases of disease is very influential on health improvement efforts both in terms of medicines availability, targeted medicines, damaged medicines and so forth. Knowing the pattern of the number of cases of disease is very important for some activities and jobs that exist. Therefore it is necessary to forecast the number of cases of disease to determine the pattern of the number of cases of disease in the future. One of the most common method of artificial neural network forecasting is Backpropagation. This study aims to forecast the number of cases of disease by using the case study of puskesmas Rogotrunan, Lumajang using Backpropagation method. Backpropagation parameters tested are the amount of data (n), alpha (α), and the number of iterations (epoch). Forecasting the number of disease on cases with test data from January to December of 2016 conducted using Backpropagation resulted in the value of MSE 115 and the accuracy of 0.0088.

Copyrights © 2018






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...