Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 3 No 2 (2019): Februari 2019

Seleksi Fitur Information Gain pada Klasifikasi Citra Makanan Menggunakan Ekstraksi Fitur Haralick dan YUV Color Moment

Devinta Setyaningtyas Atmaja (Fakultas Ilmu Komputer, Universitas Brawijaya)
Yuita Arum Sari (Fakultas Ilmu Komputer, Universitas Brawijaya)
Randy Cahya Wihandika (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
08 Jan 2019

Abstract

Food classification is a classic problem that still becomes an interest for many researchers. Several studies have been conducted using only one type of food, which is fruit as the object of the classification. This research was conducted to improve the previous ones. This study uses five types of single food as its object. The method used is color feature extraction using YUV Color Moment, texture feature extraction using Haralick, and feature selection using Information Gain. The classification algorithm is K-Nearest Neighbor (KNN). The highest accuracy obtained is 94.26% obtained from the combined features of the two selected feature extraction methods. From these results, it can be concluded that the application of a combination of feature extraction methods, namely color and texture, and feature selection method greatly influence the food image classification process.

Copyrights © 2019






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...