EIGEN MATHEMATICS JOURNAL
Vol 1 No 1: Vol 1 No 1 Juni 2018

Analisis Automorfisma Graf Pembagi-nol dari Ring Komutatif dengan Elemen Satuan

Sugiarto, Kurniawan (Unknown)
Romdhini, Mamika Ujianita (Unknown)
Switrayni, Ni Wayan (Unknown)



Article Info

Publish Date
23 Jun 2018

Abstract

Zero-divisor graphs of a commutative ring with identity has 3 specific simple forms, namely star zero-divisor graph, complete zero-divisor graph and complete bipartite zero-divisor graph. Graph automorphism is one of the interesting concepts in graph theory. Automorphism of  graph G is an isomorphism from graph G to itself. In other words, an automorphism of a graph G is a permutation φ of  the set points V(G) which has the property that (x,y) in E(G)  if and only if (φ(x),φ(y)) in E(G), i.e. φ preserves adjacency.This study aims to analyze the form of zero-divisor graph automorphisms of a commutative ring with identity formed. The method used in this study was taking sampel of each zero-divisor graph to represent each graph. Thus, pattern and shape of automorphism of each graph can be determined. Based on the results of this study, a star zero-divisor graph with pattern K_1,(p-1), where p is prime, has (p-1)! automorphisms, a complete zero-divisor graph with pattern K_(p-1), where p is prime, has (p-1)!  automorphisms, and a complete bipartite zero-divisor graph with pattern K_(p-1),(q-1), where p is prime, has (p-1)!(q-1)! automorphisms, when p not equals to q  and 2((p-1)!(q-1)!) automorphisms  when p=q.

Copyrights © 2018






Journal Info

Abbrev

eigen

Publisher

Subject

Mathematics

Description

Eigen Mathematics Journal mempublikasikan artikel yang berkontribusi pada informasi baru atau pengetahuan baru terkait Matematika, Statistika, dan Aplikasinya. Selain itu, jurnal ini juga mempublikasikan artikel berbentuk survey dalam rangka memperkenalkan perkembangan terbaru dan memotivasi ...