cover
Contact Name
Adi Suryadi
Contact Email
adisuryadi@eng.uir.ac.id
Phone
+62822 8389 6947
Journal Mail Official
jgeet@journal.uir.ac.id
Editorial Address
Jl. Kaharuddin Nasution No 113 Perhentian Marpoyan, Pekanbaru, Riau 28284
Location
Kota pekanbaru,
Riau
INDONESIA
Journal of Geoscience, Engineering, Environment, and Technology
Published by Universitas Islam Riau
ISSN : 2503216X     EISSN : 25415794     DOI : 10.25299
JGEET (Journal of Geoscience, Engineering, Environment and Technology) published the original research papers or reviews about the earth and planetary science, engineering, environment, and development of Technology related to geoscience. The objective of this journal is to disseminate the results of research and scientific studies which contribute to the understanding, development theories, and concepts of science and its application to the earth science or geoscience field. Terms of publishing the manuscript were never published or not being filed in other journals, manuscripts originating from local and International. JGEET (Journal of Geoscience, Engineering, Environment and Technology) managed by the Department of Geological Engineering, Faculty of Engineering, Universitas Islam Riau.
Arjuna Subject : -
Articles 551 Documents
Mapping Of Vegetation And Mangrove Distribution Level In Batam Island Using SPOT-5 Satellite Imagery Fajar Rizki; Arini Dewi Lestari Situmorang; Nirwana Wau; Muhammad Zainuddin Lubis; Wenang Anurogo
Journal of Geoscience, Engineering, Environment, and Technology Vol. 2 No. 4 (2017): JGEET Vol 02 No 04 : December (2017)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (725.228 KB) | DOI: 10.24273/jgeet.2017.2.4.1002

Abstract

Mangrove is a plant that plays a significant role in the balance of the ecosystem and coastal environment. Batam Island which is one of the island in Batam island become one of the areas rich in mangrove plants. As time goes by, mangrove forests are getting worse. This research uses SPOT-5 imagery data in analyzing mangrove density value in Batam island with MSAVI (Modified Soil Adjusted Vegetation Index) method. The results of this study have mangrove density in Batam Island which is divided into four classes, which is very tenuous, tenuous, medium, and very tightly where Batam Island is dominated by a class of density. Theoretically, NDVI values range from -1 to +1 but the mangrove vegetation index values are generally in the range between +0,1 to +0,7. NDVI values greater than this range are associated with a representation of a better level of vegetation health in the islands of Batam.
Modified Soil-Adjusted Vegetation Index In Multispectral Remote Sensing Data for Estimating Tree Canopy Cover Density at Rubber Plantation: Modified Soil-Adjusted Vegetation Index In Multispectral Remote Sensing Data Wenang Anurogo; Muhammad Zainuddin Lubis; Mir'atul Khusna Mufida
Journal of Geoscience, Engineering, Environment, and Technology Vol. 3 No. 1 (2018): JGEET Vol 03 No 01 : March (2018)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (812.215 KB) | DOI: 10.24273/jgeet.2018.3.01.1003

Abstract

Forest inventories such as tree canopy density information require a long time and high costs, especially on extensive forest coverage. Remote sensing technology that directly captures the surface vegetation character with extensive recording coverage can be used as an alternative to carrying out such inventory activities. This research aims to determine the level of vegetation canopy cover density on rubber plants that became the location of the research and know the accuracy of the resulting data. The method used in this research is a combination of remote sensing image interpretation, geographic information system, and field measurement. Information retrieval from remote sensing data is done by using ASTER data imagery. This stage includes three parts, namely: pre-field stage, field stage, and post-field stage. The pre-field stage includes the collection of data to be used (including literature studies related to the theme of the study), image processing (geometric and radiometric correction), cropping, masking, land cover classification, vegetation index transformation, and sample determination. The final result of data processing showed that the density of the vegetation canopy in the research area ranged between 7.31 – 12.952 cm / m2 in each grade of vegetation density. These values indicate the range of low-class vegetation canopy cover density to high-class vegetation canopy cover density in the research area. In this research error rate or root mean square error obtained from the calculation of canopy cover density is equal to 1.89.
Cover JGEET Vol 02 No 04 2017 JGEET (J. Geoscience Eng. Environ. Technol.)
Journal of Geoscience, Engineering, Environment, and Technology Vol. 2 No. 4 (2017): JGEET Vol 02 No 04 : December (2017)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1153.793 KB)

Abstract

This Volume Consists of Research Article as follow: Development of Goverment Schools Based on GIS: A Case Study of Orangi Town, Karachi. Pollen and Foraminifera Approaches to Identify Sediment Sources In The River Mouth Mahakam East Kalimantan. Structural Geology Analysis In A Disaster-Prone Of Slope Failure, Merangin Village, Kuok District, Kampar Regency, Riau Province. Sea Surface Temperature and Wind Velocity in Batam Waters Its Relation to Indian Ocean Dipole (IOD). Mapping Of Vegetation And Mangrove Distribution Level In Batam Island Using SPOT-5 Satellite Imagery. Hydro chemistry and Characteristics of Groundwater: Case Study Water Contamination at Citarum River Slope Stability Analysis Based on Type, Physical And Mechanical Properties Rock In Teluk Pandan District, East Kutai Regency, East Kalimantan Province. Geoelectricity Data Analysis For Identification The Aquifer Configuration In Bandorasawetan, Cilimus, Kuningan, West Java Province.
Halogen Chemistry of Hydrothermal Micas: a Possible Geochemical Tool in Vectoring to Ore for Porphyry Copper-Gold Deposit Arifudin Idrus
Journal of Geoscience, Engineering, Environment, and Technology Vol. 3 No. 1 (2018): JGEET Vol 03 No 01 : March (2018)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1978.068 KB) | DOI: 10.24273/jgeet.2018.3.01.1022

Abstract

Porphyry copper-gold deposit commonly exhibits an extensive alteration zone of hydrothermal micas particularly biotite and sericite. This study is aimed to analyze and utilize the chemistry of halogen fluorine and chlorine of biotite and sericite to be a possible tool in vectoring to ore for copper porphyry deposits. To achieve the objectives, several selected altered rock samples were taken crossing the Batu Hijau copper-gold mine from inner to outer of the deposit, and hydrothermal micas contained by the rocks were analyzed petrographically and chemically. Mineral chemistry was detected by electron microprobe analyzer, whilst biotite is petrographically classified as either magmatic or hydrothermal types. Sericite replacing plagioclase occurred as fine-grained mineral and predominantly associated with argillic-related alteration types. Biotites in the Batu Hijau deposit are classified as phlogopite with a relatively low mole fraction magnesium (XMg) (~0.75) compared to the “typical” copper porphyry deposit (~0.82). The relationship between the XMg and halogen contents are generally consistent with “Fe-F and Mg-Cl avoidance rules”. F content in biotite and sericite decrease systematically from inner part of the deposit which is represented by early biotite (potassic) zone where the main copper-gold hosted, to the outer part of the deposit. However, chlorine in both biotite and sericite from each of the alteration zones shows a relative similar concentration, which suggests that it is not suitable to be used in identification of the alteration zones associated with strong copper-gold mineralization. H2O content of the biotite and sericite also exhibits a systematic increase outward which may also provide a possible geochemical vector to ore for the copper porphyry deposits. This is well correlated with fluorine content of biotite in rocks and bulk concentration of copper from the corresponding rocks.
A Study on influence of organic ligands on migration of heavy metals through compacted clayey soil Sudheer Kumar Yantrapalli; Hari Krishna P; Srinivas K
Journal of Geoscience, Engineering, Environment, and Technology Vol. 3 No. 2 (2018): JGEET Vol 03 No 02 : June (2018)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (726.25 KB) | DOI: 10.24273/jgeet.2018.3.2.1036

Abstract

This paper presents the feasibility study on utilization of locally available clayey soil as Compacted Clay Liner based on its contaminant migration capacity under the presence of organic chemical EDTA (Ethylene Diamine Tetra acetic Acid) which is abundantly released into the environment. Lead, Nickel, cadmium and chromium ions was selected as contaminants and its migration properties are assessed by conducting column studies with a single and multiple heavy metal solution with the EDTA. From the experimental investigations, it is revealed that with the presence of EDTA, the contaminant breakthrough time get reduced due to soluble metal – EDTA complex formation. At pH 2, interaction with multi metal, the mobility was increased and the order of mobility was observed as Cr > Cd > Ni > Pb. With the presence of EDTA in multi metal system at pH 2, the order of the mobility was Cr > Ni > Cd > Pb and at pH 7 the mobility of heavy metals were increased the order was Cr > NI > Pb > Cd. This study reveals that locally available clayey soil is capable of retaining heavy metals and it may be used as a compacted clay liner, where organic chemical like (EDTA) ingression is present.
Fluid Inclusion Study of The Tumpangpitu High Sulfidation Epithermal Gold Deposit in Banyuwangi District, East Java, Indonesia Yu Yu Myaing; Arifudin Idrus; Anastasia Dewi Titisari
Journal of Geoscience, Engineering, Environment, and Technology Vol. 3 No. 1 (2018): JGEET Vol 03 No 01 : March (2018)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1220.852 KB) | DOI: 10.24273/jgeet.2018.3.01.1039

Abstract

The Tumpangpitu high sulfidation (HS) epithermal gold deposit is located in the south coast of East Java, Banyuwangi District, East Java Province, Indonesia. This area lies within the central portion of the Cenozoic Sunda‐Banda magmatic arc which trends southeast from northern Sumatra to west Java then eastward through east Java, Bali, Lombok, Sumbawa and terminating at Banda sea. The geology of the Tumpangpitu is predominantly occupied by Late Oligocene to Middle Miocene low-K calc-alkaline to alkaline andesitic volcanic rocks and interbedded with volcaniclastic rock sequences, which are associated with low-K intermediate intrusions. The mineralization style at the Tumpangpitu area is composed of a high‐sulfidation (HS) epithermal gold-copper system which is typically associated with concealed gold-rich porphyry copper system. The HS epithermal mineralization is hosted by volcanic and volcaniclastic rocks in this research area. The mineralization domains are divided into Zone A, Zone B and Zone C which are situated along NW-SE-trending silica ledges zones. The HS epithermal mineralization is texturally occurs as vuggy replacements mineralization as well as stockworks, disseminated forms, fractures and veins. Fluid inclusion study was conducted for 6 quartz vein samples which petrographically entrapped fluid inclusions. Homogenization temperature (Th) and melting temperature (Tm) can microthermometrically be determined by fluid inclusion analysis. The average homogenization temperature (Th) of the fluid inclusions gives 180˚C to 342˚C and melting temperature are from -0.1 ˚C to -1.4˚C. Tm corresponds to the salinities ranging from 0.1 to 4.5 wt% NaCl equivalent. The paleodepth of ore formation can be estimated from the salinity of fluid. Since the deposit was not formed at boiling condition, the minimum paleodepth of ore (quartz) samples taken from both shallow level (53.35 m) and deep level (135.15 m) is determined at 650m and 1,220 m, respectively. The microthermometric data point out that the Tumpangpitu deposit formed at moderate temperature and low salinity by magmatic fluid mixing and dilution by meteoric water during the hydrothermal fluid evolution. On the basis of the fluid inclusion microthermometric data and its other key characteristics, the Tumpangpitu gold mineralization shares some similarities compared to other typical HS-epithermal gold deposits worlwide although it also shares few differences.
A Study On Influence Of Real Municipal Solid Waste Leachate On Properties Of Soils In Warangal, India Sudheer Kumar Yantrapalli; Hari Krishna P; Srinivas Srinivas
Journal of Geoscience, Engineering, Environment, and Technology Vol. 3 No. 1 (2018): JGEET Vol 03 No 01 : March (2018)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (413.814 KB) | DOI: 10.24273/jgeet.2018.3.1.1047

Abstract

Warangal city generates three hundred tons of garbage daily which is dropped into the Rampur dump yard by Warangal Municipal Corporation (WMC). Dumping of wastes will lead to the formation of leachate which in turn will cause environmental issues like soil and ground water contamination. Chemical analysis of leachate indicates that calcium, chloride, sodium and magnesium are the major ions, along with organic content. This leads to contamination of soil as well as ground water bodies. In this study, authors have attempted to know the behavior of soil under the influence of leachate. Contaminated specimens were prepared and tested for Atterberg limits, shear strength, swell potential and hydraulic conductivity of CH and SC which are present in the dumping yard. Index properties, hydraulic conductivity and swell potential decreased with increase in leachate concentration. Unconfined compressive strength also showed an increase. The decrease in hydraulic conductivity indicated the clogging of pores. In a nutshell, the present work deals with the impact of leachate on the index and engineering properties of CH and red soil.
Spatial Statistical Analysis for Potential Transit Oriented Development (TOD) in Jakarta Metropolitan Region Herika Muhamad Taki; Mohamed Mahmoud H. Maatouk
Journal of Geoscience, Engineering, Environment, and Technology Vol. 3 No. 1 (2018): JGEET Vol 03 No 01 : March (2018)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (30.414 KB) | DOI: 10.24273/jgeet.2018.3.01.1091

Abstract

Spatial planning on Transit Oriented Development (TOD) concerns with the integration between land use and transportation aspects. However, in some places, public transport management based on transit nodes such as train services which are not well- integrated, and causing spatial chaos, especially surrounding station areas. It is essential to prepare a public transportation plan by maximizing regional potential capacity with TOD model. The purpose of this paper is to identify and prioritize potential areas for TOD using spatial statistical analysis with combined models of Geographic Information System (GIS) and Analytical Hierarchy Process (AHP) for Jakarta Metropolitan Regional (JMR), Indonesia. This paper employed two major indicators: main- and sub-indicators depending on relevant references. The weight of each indicator was determined by chosen experts. The result showed that some of the metro areas of Jakarta were highly suitable for TOD and indicated the characteristics of the development of urban areas. This paper’s outcome was useful in order to determine the potential location of TOD and was applicable to other areas within the same geographical conditions.
The Phenomena of Flood Caused by the Seawater Tidal and its Solution for the Rapid-growth City: A case study in Dumai City, Riau Province, Indonesia Husnul Kausarian; Batara Batara; Dewandra Bagus Eka Putra
Journal of Geoscience, Engineering, Environment, and Technology Vol. 3 No. 1 (2018): JGEET Vol 03 No 01 : March (2018)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1751.108 KB) | DOI: 10.24273/jgeet.2018.3.01.1221

Abstract

A strategic city located on the northern coast of Sumatera Island known as Dumai City. This city is a growth and industrial city that always increase everyday economically. This city faces the flood problem that not only from the excess water from the rain, but also from the phenomena of seawater tidal. The tidal should not reach the mainland for the ideal situation, but the urbanization and development problem made it happen. Field observation and satellite data analysis shows the problem that happened in this city, also find out the solution how to make the seawater tidal will not being the flood when it occurs. The flood caused by the inadequate drainage condition is exacerbated by the low awareness of people who still do not maintain cleanliness, a lot of garbage that accumulates in the drainage causing the process of water flow to be inhibited. Geologically, the base rock of Dumai City consists of sand and peat which logically is a good system to absorb water because sand and peat are materials that have high porosity. Topographically, the city of Dumai is at an average height of three meters above sea level, so in fact, this city could be spared from the flood caused by the tide when it occurs. The solutions that can be proposed for this city are making the rivers being clean with normalization, well-designed drainage, Watergate and making an artificial lake for sinking the tidal seawater.
Infiltration Rate of Quarternary Sediment at Rumbio Jaya, Kampar, Riau Adi Suryadi; Tiggi Choanji; Desy Wijayanti
Journal of Geoscience, Engineering, Environment, and Technology Vol. 3 No. 1 (2018): JGEET Vol 03 No 01 : March (2018)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1953.256 KB) | DOI: 10.24273/jgeet.2018.3.1.1223

Abstract

The study of infiltration rate was conducted at Rumbio Jaya, Kampar, Riau which closed with meandering river of Kampar. Infiltration rate data collected by using double ring infiltrometer with 30 cm and 60 cm diameter of cylinder. To support the data of infiltration test at quarternary sediment, subsurface soil profiling data were taken with hand auger drilling. The result of infiltration rate analysis shown the highest value is located at ST 2 and ST 3 (southwest part of study area) with value 248 mm/hr and 159 mm/hr. infiltration rate gradually decreasing toward northeast of study area with lowest value 2.6 mm/hr at ST 6 which caused location very closed to Kampar River. Core data from hand auger drilling support result of infiltration rate with gravelly sand layer (high porosity and permeability) are dominated at study area and some low infiltration rate location consists of thick layer of silt.

Filter by Year

2016 2025


Filter By Issues
All Issue Vol. 10 No. 02 (2025): JGEET Vol 10 No 02 : June (2025) Vol. 10 No. 3 (2025): JGEET Vol 10 No 03 : September (2025) Vol. 10 No. 1 (2025): JGEET Vol 10 No 01 : March (2025) Vol. 9 No. 04 (2024): JGEET Vol 09 No 04 : December (2024) Vol. 9 No. 3 (2024): JGEET Vol 09 No 03 : September (2024) Vol. 9 No. 2 (2024): JGEET Vol 09 No 02 : June (2024) Vol. 9 No. 1 (2024): JGEET Vol 09 No 01 : March (2024) Vol. 8 No. 4 (2023): JGEET Vol 08 No 04 : December (2023) Vol. 8 No. 3 (2023): JGEET Vol 08 No 03 : September (2023) Vol. 8 No. 2 (2023): JGEET Vol 08 No 02 : June (2023) Vol. 8 No. 1 (2023): JGEET Vol 08 No 01 : March (2023) Vol. 8 No. 02-2 (2023): Special Issue from The 1st International Conference on Upstream Energy Techn Vol. 7 No. 4 (2022): JGEET Vol 07 No 04 : December (2022) Vol. 7 No. 3 (2022): JGEET Vol 07 No 03 : September (2022) Vol. 7 No. 2 (2022): JGEET Vol 07 No 02 : June (2022) Vol. 7 No. 1 (2022): JGEET Vol 07 No 01 : March (2022) Vol. 6 No. 4 (2021): JGEET Vol 06 No 04 : December (2021) Vol. 6 No. 3 (2021): JGEET Vol 06 No 03 : September (2021) Vol. 6 No. 2 (2021): JGEET Vol 06 No 02 : June (2021) Vol. 6 No. 1 (2021): JGEET Vol 06 No 01 : March (2021) Vol. 5 No. 4 (2020): JGEET Vol 05 No 04: December 2020 Vol. 5 No. 3 (2020): JGEET Vol 05 No 03 : September (2020) Vol. 5 No. 2 (2020): JGEET Vol 05 No 02 : June (2020) Vol. 5 No. 1 (2020): JGEET Vol 05 No 01: March 2020 Vol. 4 No. 4 (2019): JGEET Vol 04 No 04: December 2019 Vol. 4 No. 3 (2019): JGEET Vol 04 No 03 : September (2019) Vol. 4 No. 2 (2019): JGEET Vol 04 No 02 : June (2019) Vol 4 No 1 (2019): JGEET Vol 04 No 01 : March (2019) Vol. 4 No. 1 (2019): JGEET Vol 04 No 01 : March (2019) Vol. 4 No. 2-2 (2019): Special Edition (Geology, Geomorphology and Tectonics of India) Vol. 3 No. 4 (2018): JGEET Vol 03 No 04 : December (2018) Vol 3 No 4 (2018): JGEET Vol 03 No 04 : December (2018) Vol 3 No 3 (2018): JGEET Vol 03 No 03 : September (2018) Vol. 3 No. 3 (2018): JGEET Vol 03 No 03 : September (2018) Vol. 3 No. 2 (2018): JGEET Vol 03 No 02 : June (2018) Vol 3 No 2 (2018): JGEET Vol 03 No 02 : June (2018) Vol 3 No 1 (2018): JGEET Vol 03 No 01 : March (2018) Vol. 3 No. 1 (2018): JGEET Vol 03 No 01 : March (2018) Vol. 2 No. 4 (2017): JGEET Vol 02 No 04 : December (2017) Vol 2 No 4 (2017): JGEET Vol 02 No 04 : December (2017) Vol 2 No 3 (2017): JGEET Vol 02 No 03 : September (2017) Vol. 2 No. 3 (2017): JGEET Vol 02 No 03 : September (2017) Vol. 2 No. 2 (2017): JGEET Vol 02 No 02 : June (2017) Vol 2 No 2 (2017): JGEET Vol 02 No 02 : June (2017) Vol 2 No 1 (2017): JGEET Vol 02 No 01 : March (2017) Vol. 2 No. 1 (2017): JGEET Vol 02 No 01 : March (2017) Vol 1 No 1 (2016): JGEET Vol 01 No 01 : December (2016) Vol. 1 No. 1 (2016): JGEET Vol 01 No 01 : December (2016) More Issue