cover
Contact Name
Yuhefizar
Contact Email
jurnal.resti@gmail.com
Phone
+628126777956
Journal Mail Official
ephi.lintau@gmail.com
Editorial Address
Politeknik Negeri Padang, Kampus Limau Manis, Padang, Indonesia.
Location
,
INDONESIA
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
ISSN : 25800760     EISSN : 25800760     DOI : https://doi.org/10.29207/resti.v2i3.606
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) dimaksudkan sebagai media kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai penelitian Rekayasa Sistem, Teknik Informatika/Teknologi Informasi, Manajemen Informatika dan Sistem Informasi. Sebagai bagian dari semangat menyebarluaskan ilmu pengetahuan hasil dari penelitian dan pemikiran untuk pengabdian pada Masyarakat luas dan sebagai sumber referensi akademisi di bidang Teknologi dan Informasi. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) menerima artikel ilmiah dengan lingkup penelitian pada: Rekayasa Perangkat Lunak Rekayasa Perangkat Keras Keamanan Informasi Rekayasa Sistem Sistem Pakar Sistem Penunjang Keputusan Data Mining Sistem Kecerdasan Buatan/Artificial Intelligent System Jaringan Komputer Teknik Komputer Pengolahan Citra Algoritma Genetik Sistem Informasi Business Intelligence and Knowledge Management Database System Big Data Internet of Things Enterprise Computing Machine Learning Topik kajian lainnya yang relevan
Articles 1,046 Documents
Comparative Analysis of Hybrid Model Performance Using Stacking and Blending Techniques for Student Drop Out Prediction In MOOC Muhammad Ricky Perdana Putra; Ema Utami
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 3 (2024): June 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i3.5760

Abstract

Despite being in high demand as a lifelong learner and academic material supplement, the implementation of Massive Open Online Courses (MOOC) has problems, one of which is the dropout rate (DO) of students, which reaches 93%. As one of the solutions to this problem, machine learning can be utilized as a risk management and early warning system for students who have the potential to drop out. The use of ensemble techniques to build models can improve performance, but previous research has not reviewed the most optimal ensemble technique for this case study. As a form of contribution, this study will compare the performance of models built from stacking and blending techniques. The algorithms used in the base model are KNN, Decision Tree, and Naïve Bayes, while the meta-model uses XGBoost. These algorithms are used to build models with stacking and mixing techniques. The experimental results using stacking are 82.53% accuracy, 84.48% precision, 94.12% recall, and 89.04% F1 score. Meanwhile, the blend obtained 83.39% precision, 85.31% precision, 94.21% recall, and 89.54% F1-Score. These results are supported by model testing using k-fold cross-validation and confusion matrix techniques, which show the same results. That is, blending is 0.86% higher than stacking, so it can be concluded that blending performs better than stacking in the MOOC student dropout prediction case study.
Convolutional Neural Network and LSTM for Seat Belt Detection in Vehicles using YOLO3 Udayanti, Erika; Etika Kartikadarma; Fahri Firdausillah
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 3 (2024): June 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i3.5784

Abstract

The application of an electronic violation detection system has begun to be implemented in many countries using CCTV cameras installed at highway and toll road points. However, the development of a violation detection system using data in the form of images that have a high level of accuracy is still a challenge for researchers. Several types of violations detected include the use of seat belts, the use of cell phones while driving, which is influenced by the number of vehicles, vehicle speed and lighting, which can increase the difficulty in the detection process. This research developed a traffic violation detection system using a hybrid model, namely the CNN and LSTM algorithms for the application of discipline using seat belts. The dataset was obtained from RoboFlow Universe with a total of 199 front view car images consists of 82 using seatbelts and 78 not using seatbelts for the training process. The CNN algorithm plays a role in the feature extraction process from input image data, while the LSTM algorithm plays a role in the prediction process. Additionally, the performance evaluation of the CNN+LSTM algorithm will be measured using the accuracy value to measure the performance of the training process and testing process. When measuring the performance of the training process, it will be compared with several basic detection models used, such as CNN, VGG16, ResNet50, MobileNetV2, Yolo3, Yolo3+LSTM. The test results show that Yolo3+LSTM has a higher accuracy compared to the others, at 89%. Next, in the testing process, the CNN+LSTM model will be compared with the basic method, namely CNN. The test results show that the CNN+LSTM models have a higher accuracy of 89%. Meanwhile, in the basic CNN model, the resulting accuracy was 85%.
Increasing the Accuracy of Brain Stroke Classification using Random Forest Algorithm with Mutual Information Feature Selection Fachruddin, Fachruddin; Rasywir , Errissya; Pratama, Yovi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 4 (2024): August 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i4.5795

Abstract

Brain stroke stands out as a leading cause of death, distinguishing it from common illnesses and highlighting the critical need to utilize machine learning techniques to identify symptoms. Among these techniques, the Random Forest (RF) algorithm emerged as the main candidate because of its optimal accuracy values. RF was chosen for its ensemble learning properties that optimize accuracy while simultaneously, bagging all outputs (DT), thus increasing its efficacy. Feature Selection, an important data analysis step, which is mainly achieved through pre-processing, aims to identify influential features and ignore less impactful features. Mutual Information serves as an important feature selection method. Specifically, the highest level of accuracy was achieved by cross-validating the test data - 10, resulting in 0.7760 without feature selection and 0.7790 with mutual information. Most of the attributes in the brain stroke dataset show relevance to the stroke disease class, but the resulting decision tree shows age as a particularly important node. So, the research results show that the selection feature (Mutual Information) can increase the accuracy of brain stroke classification, although it is not significant, namely an increase of 0.0030%. With an increase, where there is no significant difference, it can be said that almost all the attributes contained in the brain stroke dataset used have an influence on their relevance to the stroke disease class.
Comparative Analysis of Recurrent Neural Network Models Performance in Predicting Bitcoin Prices Ramadhan, Zidane Ikkoy; Widiputra, Harya
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 3 (2024): June 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i3.5810

Abstract

The recurring neural network is a deep learning algorithm that is commonly used to develop prediction systems. There are many variants of RNN such as RNN itself, long-short-term memory (LSTM), and gated recurring unit, so it is frequently debatable which algorithm from the RNN family has the most optimal efficiency and computation time. When developing a prediction system, sequential or time series data is required so that an accurate prediction can be made. Sequential or time series data involve data arranged in a time sequence, such as weather data, financial data, carbon emission data, and traffic data recorded over time. This research will be carried out by predicting the three RNN models against historical Bitcoin value data. The research method used is Experimental Design by comparing the performance between the three models on bitcoin value time series data, testing is done by involving hyperparameters such as Tanh, Sigmoid, and ReLU activation functions, batch size, and epochs. The aim of this research is to find out which RNN model can produce the most optimal performance and find out what performance measures can be used to evaluate and compare the performance between the three models. The results of the study show that LSTM is the most effective model with RMSE 0.012441 and MSE 0.000155 but inefficient because it takes 3 minutes 24 seconds to run the computation; in the meantime, the Tanh activation function gives the most optimal prediction than Sigmoid and RelU and therefore should be the main candidate to be used with RNN models when predicting Bitcoin prices.
Making AI Work for Government: Critical Success Factor Analysis Using R-SWARA Brillianto, Bramanti; Ruldeviyani, Yova; Sidiq, Darmawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 3 (2024): June 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i3.5813

Abstract

This study quantifies what makes Artificial Intelligence (AI) work for government, the critical success factors (CSFs) for successful AI implementation within the Directorate General of Taxes (DGT). Analyzing factors such as technology, organization, process, and environment, the research highlights the importance of organizational readiness, strategic vision, and leadership support to drive successful AI integration within DGT. The dimension of the organization became the most critical factor, followed by technology, process, and environment. The findings offer actionable insights for DGT's decision-making processes, aiding in strategic resource allocation and tailored AI strategy refinement. Furthermore, this research is a valuable reference for other public sector organizations that aim to enhance operational efficiency through the adoption of AI. This study empowers decision makers within the DGT and the wider public sector by providing nuanced information on the critical factors that influence the successful implementation of AI, fostering improved operational efficiency and governance practices.
Analysis of Sulawesi Earthquake Data from 2019 to 2023 using DBSCAN Clustering Wijaya, Ody Octora; Rushendra
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 4 (2024): August 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i4.5819

Abstract

Sulawesi is a region in Indonesia known for its significant seismic activity, and its history of impactful earthquakes makes it an area of crucial importance for in-depth analysis. This study analyses earthquake occurrence data in the Sulawesi region from 2019 to 2023 using clustering methods with the DBSCAN algorithm. The utilization of the DBSCAN algorithm was chosen for its ability to cluster data based on spatial density, well-suited for analyzing the spatial patterns of earthquakes. DBSCAN is known for its effectiveness in identifying spatial clusters, especially in handling data with undefined density patterns. The primary aim of this research is to identify spatial earthquake occurrence patterns, classify regions with similar earthquake occurrence rates, describe the characteristics of the resulting spatial clusters, and identify seismic gap areas. The results of analysis and clustering using the DBSCAN algorithm have identified clusters with earthquake depth characteristics, which are expected to make a significant contribution to mapping and understanding earthquake vulnerability and distribution in this region. These findings can aid in more effective disaster mitigation planning, support sustainable development efforts, and enhance earthquake preparedness and response in Sulawesi. This study contributes to a better understanding of earthquake patterns and potential seismic gaps in Sulawesi, which is crucial for developing improved risk mitigation strategies and supporting sustainable development policies.
Comparative Analysis of Gradient Descent Learning Algorithms in Artificial Neural Networks for Forecasting Indonesian Rice Prices Rica Ramadana; Agus Perdana Windarto; Dedi Suhendro
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 4 (2024): August 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i4.5822

Abstract

Artificial Neural Networks (ANN) are a field of computer science that mimics the way the human brain processes data. ANNs can be used to classify, estimate, predict, or simulate new data from similar sources. The commonly used algorithm for prediction in ANN is Backpropagation, which yields high accuracy but tends to be slow during the training process and is prone to local minima. To address these issues, appropriate parameters are needed in the Backpropagation training process, such as an optimal learning function. The aim of this study is to evaluate and compare various learning functions within the Backpropagation algorithm to determine the best one for prediction cases. The learning functions evaluated include Gradient Descent Backpropagation (traingd), Gradient Descent with Adaptive Learning Rate (traingda), and Gradient Descent with Momentum and Adaptive Learning Rate (traingdx). The dataset used is the average wholesale rice price in Indonesia, obtained from the Central Statistics Agency (BPS) website. The evaluation results show that the traingdx learning function with a 5-5-1 architecture model achieves the highest accuracy of 83.33%, representing an 8.3% improvement over the traingd and traingda learning functions, which both achieved a maximum accuracy of 75%. Based on this study, it can be concluded that using various learning functions in Backpropagation yields better accuracy compared to standard Backpropagation.
Twitter Sentiment Analysis Towards Candidates of the 2024 Indonesian Presidential Election Cahyanti, Rhoma; Desiana Nurul Maftuhah; Aris Budi Santoso; Indra Budi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 4 (2024): August 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i4.5839

Abstract

Long before the elections were held, the topic related to elections was widely discussed on news portals and social media, including Twitter. A few studies related to the Indonesian election have tried to predict candidates who will run for the presidential election, but there has been no research that examines public sentiment on social media towards each of the potential candidates. The main objective of this study is to analyze the public sentiment in Twitter towards potential candidates for the 2024 Indonesian presidential election. This research seeks to fill the gaps in previous research and become a reference for further research regarding sentiment analysis for election prediction using Twitter. The presidential candidates used in the research are the top 3 candidates based on the Poltracking survey, namely Ganjar Pranowo, Prabowo Subianto, and Anies Baswedan. The data were taken from January until October 2022, more than a year before the general election began. To predict the sentiment, four different machine-learning methods were used and compared to each other. There are Naïve Bayes, Support Vector Machines, Random Forests, and Neural Networks. Based on the sentiment results of each candidate, the highest sentiment towards Prabowo is neutral (55.49%), the highest sentiment towards Ganjar is positive (61.34%), and the highest sentiment towards Anies is neutral (44.84%). Results from the study also show that Anies was the presidential candidate who received more negative sentiment than the other two (56.63%). Meanwhile, Ganjar Pranowo got the most positive sentiment of all (42,69%). For the neutral sentiment, Anies Baswedan also got the most results (39,87%), followed by Prabowo (38.99%) and Ganjar Pranowo (21.14%). The result of the study also discovered that random forest and neural networks have the best performance for sentiment analysis.
Skin Cancer Classification Using a Hybrid Pre-trained CNN with Random Forest Classifier Kostidjan, Okky Darmawan; Purwanto, Yudhi; Yuniarti, Anny
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 4 (2024): August 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i4.5857

Abstract

Skin cancer, a leading cause of global mortality with 10 million deaths annually, is projected to increase rapidly if not diagnosed early. Traditional diagnosis relies on visual evaluation and histopathology, which are subjective and time-consuming. Recent advances in Convolutional Neural Networks (CNN) enable automated, accurate image analysis for early identification. This study explores pre-trained CNN models, including DenseNet-201, InceptionV3, MobileNet, ResNet50, and VGG16, by modifying them to better identify skin lesions as malignant or benign. The proposed models outperformed the state-of-the-art CNN models evaluated on publicity with traditional test data. The proposed models achieved 94.20% accuracy, which is higher than that of traditional CNN models.
A Quantum Perceptron: A New Approach for Predicting Rice Prices at the Indonesian Wholesale Trade Level Solikhun; Yunita, Tri
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 4 (2024): August 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i4.5869

Abstract

The wholesale rice trade in Indonesia encounters various challenges in forecasting prices. These challenges are influenced by factors such as weather, government policies, global market conditions, and other economic variables. Accurate price predictions are crucial for informing government policy in a timely manner. This research introduces a new approach that utilizes the Quantum Perceptron algorithm to forecast rice prices. The algorithm, an innovative method in quantum computing, is expected to enhance the efficiency and effectiveness of price predictions. Although the research is still in the analytical stage, the use of Quantum Perceptron shows promise in dynamically addressing the complexity of market data and the variability of factors affecting rice prices. The method focuses on developing models that can leverage quantum computing to process information more effectively than classical methods. By harnessing the unique properties of quantum mechanics, such as superposition and entanglement, Quantum Perceptron can identify complex patterns and optimize predictions of future rice prices. The research describes the implementation of quantum algorithms in the context of the Indonesian rice wholesale market, including the technical challenges encountered and future development prospects. The research utilizes quantum computing along with the perceptron algorithm. The researchers focused on analyzing the quantum perceptron algorithm because of the limited availability of quantum computing devices. The findings of this research are confined to analysis. In order to advance this research, the author recommends that future studies employ quantum devices to achieve more accurate predictions

Page 85 of 105 | Total Record : 1046