cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota malang,
Jawa timur
INDONESIA
Journal of Energy, Mechanical, Material and Manufacturing Engineering
ISSN : 25416332     EISSN : 25484281     DOI : -
Core Subject : Engineering,
Journal of Energy, Mechanical, Material and Manufacturing Engineering Scientific (JEMMME) is a scientific journal in the area of renewable energy, mechanical engineering, advanced material, dan manufacturing engineering. We are committing to invite academicians and scientiests for sharing ideas, knowledges, and experiences in our online publishing for free of charge. It would be our pleasure to accept your manuscripts submission to our journal site.
Arjuna Subject : -
Articles 7 Documents
Search results for , issue "Vol. 2 No. 1 (2017)" : 7 Documents clear
Energy Absorption and Deformation Pattern Analysis of Initial Folded Crash Box Subjected to Frontal Test Moch. Agus Choiron; Zumrotul Ida; Anindito Purnowidodo; Ahmad Rivai
JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) Vol. 2 No. 1 (2017)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jemmme.v2i1.4689

Abstract

Crash box design as one of the passive safety components in a vehicle had been developed to enhance energy absorption. Initial fold on the crash box is set to facilitate folding during the crash. The aims of this study is to investigate the initial folded crash box with length to thickness ratio subjected to frontal test. The frontal test is modelled by using finite element analysis. Through computer simulation using 9 models, the obtained result was used to provide the better design of crash box. The variations in this study were length to thickness ratio of crash box with length of tube (L) = 115; 132.5; 150 mm and the thickness of tube (t) = 1.6; 2.0; 2.5 mm. The crash box material was assumed as bilinear isotropic hardening material. The velocity used in the simulations was 7.67 m/s with impact mass of 103 kg. Based on the results, it can be shown that 1st model to 8th model produce deformation pattern as concertina mode and 9th model has diamond mode. The 3rd model has the largest energy absorption with value 18.29 kJ.
A Method to Extract P300 EEG Signal Feature Using Independent Component Analysis (ICA) for Lie Detection Wahyu Caesarendra
JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) Vol. 2 No. 1 (2017)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jemmme.v2i1.4796

Abstract

The progress of today's technology is growing very quickly. This becomes the motivation for the community to be able to continue and provide innovations. One technology to be developed is the application of brain signals or called with electroencephalograph (EEG). EEG is a non-invasive measurement method that represents electrical signals from brain activity obtained by placement of multiple electrodes on the scalp in the area of the brain, thus obtaining information on electrical brain signals to be processed and analyzed. Lie is an act of covering up something so that only the person who is lying knows the truth of the statement. The hidden information from lying subjects will elicit an EEG-P300 signal response using Independent Component Analysis (ICA) in different shapes of amplitude that tends to be larger around 300 ms after stimulation. The method used in the experiment is to invite subject in a card game so that the process can be done naturally and the subject can well stimulated. After the trials there are several results almost all subjects have the same frequency on the frequency of 24-27 Hz. This is a classification of beta waves that have a frequency of 13-30 Hz where the beta wave is closely related to active thinking and attention, focusing on the outside world or solving concrete problems.
Evaluation The Effect Of HTGN Treatments On The Corrosion Resistance and Magnetic Properties Of Austenitic Stainless Steel 316L And 316LVM Agus Suprihanto
JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) Vol. 2 No. 1 (2017)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jemmme.v2i1.4898

Abstract

High temperature gas nitriding (HTGN) is the new methods to enhanced the properties of stainless steel. The HTGN process is able to diffuse the nitrogen atom into stainless steel. Increasing the nitrogen concentration produces higher corrosion resistance. Stainless steel for implant and medical devices such as 316L and 316LVM not only have to high corrosion resistance but also have to magnetic properties stabilities. Evaluation of corrosion and magnetic properties for austenitic stainless steel 316L and 316LVM after HTGN treatments was succesfully done. The corrosion resistance not only significantly increases but the stability of austenite phase is also increases. Therefore HTGN treatments is suitabe for improving the corrosion resistance for 316L and 316LVM which used as implant material.
THE INFLUENCE OF PROCESS PARAMETERS TOWARD COLLAR HEIGHT ON INCREMENTAL BACKWARD HOLE-FLANGING PROCESS Muhammad Fakhruddin; Mochammad Agus Choiron; Anindito Purnowidodo
JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) Vol. 2 No. 1 (2017)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jemmme.v2i1.4899

Abstract

Abstract                  The experimental study of the influence of process parameters towards collar height on incremental backward hole-flanging (IBHF) process with aluminium plate workpiece was presented in this paper. The effect of process parameters toward collar height which produced by IBHF process was investigated. Experiments were performed with a CNC machine, a 30o conical forming tool, and aluminium plates. The process parameters are feed speed with two levels, radial forming step size with three, and axial forming step size with three levels. Some parameters were kept constant, i.e., spindle speed, initial hole diameter, final hole diameter, and conical forming tool diameter. Digital Vernier caliper was used to measure the height of the collar. Experimental results of IBHF process have shown that the feed speed (vf) parameter has no effect toward collar height. Increased radial forming step size (Δx/y), increased the collar height also. Increased the axial forming step size (Δz) reduced the collar height. Keywords: hole-flanging, incremental sheet metal forming, incremental backward.
Spider Web Shape of Brass Catalytic Converter for Reducing Exhaust Gas Emission Heni Hendaryati; Ali Mokhtar
JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) Vol. 2 No. 1 (2017)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jemmme.v2i1.4902

Abstract

The rapid increase of the number of motor vehicles, especially motorcycles, makes serious problem caused by the pollution from gas emission of fossil fuel combustion. The problems related to human health and the erosion on ozone layer is credited to its gas emission. Several dangerous and toxic gasses such as Hydrocarbon (HC), Carbon Monoxide (CO), and Nitrogen Oxide (NOx), Sulphur Dioxide (SO2), and Lead (Pb) are emitted during IC engine operation.To manage those dangerous gasses, catalytic converter which converts the gasses into more eco-friendly CO2H2O and N2 may be employed. In this research, a specially designed catalytic converter made from brass (CuZn) wire in the form of spider web pattern was fitted into exhaust system of a standard motorcycle. The performance of the converter for several engine rotation speeds was examined by measuring CO and HC of exhaust by using Gas Analyzer.By comparing the exhaust of a standard exhaust system and modified exhaust system (fitted with converter), it can be concluded that the converter was able to decrease the exhaust emission gas. For HC content, the percentage of decrease was as much as 36,88 % for converter fitted exhaust system compared to 61.12% for standard one. For CO content, the decrease percentage was 19.90% compared to 80.10% for standard one.
Comparison of Corrosion Rate on Paint Coated and Uncoated SS400 Steel Eko Hariyadi; Mohammad Jufri; Hasanuddin Hasanuddin
JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) Vol. 2 No. 1 (2017)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jemmme.v2i1.4904

Abstract

To prevent corrosion in metal, especially carbon steel, always need efforts which considered expensive one. But, compared with costs and losts when the corrosion attack is not properly managed then the cost of efforts is much lower. The most popular method in preventing corrosion attack is by coating of metal which also has decorative objective. In this research, four coating materials were applied to the surface of low carbon steel strips (SS400) and as control uncoated SS400 steel strips were also employed. The steel strips then were dipped into electrolite solution consisted of 30% of consentration of H2SO4, and NaCl soluted in river water for 15 (fifteen) days. After the presetted time was elapsed, the steel strips then examined for lost of mass. It was found that the highest lost of mass was for unpolished uncoated one dipped in H2SO4 with corrosion rate of 4,566.06 mpy. The lowest lost was for paint coated one dipped in NaCl-river water solution with corroion rate of 0.64 mpy.
An analysis on Aerodynamics Performance Simulation of NACA 23018 Airfoil Wings on Cant Angles Setyo Hariyadi
JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) Vol. 2 No. 1 (2017)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jemmme.v2i1.4905

Abstract

Winglet attached on the tip of aircraft wings to increase lift. Mainly, winglet used for increasing aerodynamic efficiency, it decreases induced drag caused by vortex on wings tip. The phenomenon of vortex is collision of high-pressured air below the wings meet the low-pressured air above it that cause turbulence. Induced drag may reach 40% of total drag during cruising, and 80-90% while take off. A procedure to decrease induced drag is using wing tip devices. It used on commercial aircrafts and the most frequently used is blended winglet. Numerical study conducted to examine the best aerodynamic performance of sub-sonic plane wings in angles of attack. Analysis on NACA 23018 airfoil wings with blended winglet on the tip was conducted. Freestream velocity of 40 m/s or Re = 1 × 106, and angle of attack (α) 0o, 5o, 10o, and 15o are used. Evaluation for parameter includes coefficient pressure (Cp), velocity profile, lift, drag, and ratio CL/CD. Obtained contour are pressure contour, velocity, and vorticity. In view of all this, there is increasing performance of aerodynamic with CL/CD ratio of wings with blended winglet and plain wing. Reaching current angle of attack, the function of winglet is gradually decrease.

Page 1 of 1 | Total Record : 7