cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 4 Documents
Search results for , issue " Vol 4, No 4 (2018): April" : 4 Documents clear
Laser Drilling of Small Holes in Different Kinds of Concrete Nagai, Kaori; Beckemper, Stefan; Poprawe, Reinhart
Civil Engineering Journal Vol 4, No 4 (2018): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (646.492 KB) | DOI: 10.28991/cej-0309131

Abstract

Recently, in Japan, safety measures such as earthquake-resistant reinforcement work and tile-reinforcement work are increasing. Current concrete drilling methods have issues such as noise, vibration, dust, and reaction force. These methods are causing stress for the residents. Consequently, solutions are being sought for work taking place on skyscrapers and at facilities that cannot shut down during construction, such as hotels, schools, hospitals and geriatric facilities for instance.   This study investigated how laser drilling change the conditions, depending on the type of concrete in order to determine the possibility of using laser drilling for tile-reinforcement work and repairing concrete on building exterior. The results confirmed that it’s possible to successfully drill holes for drilling diameters of 4 to 6 mm and depths of around 50 mm in concrete with a compressive strength within the range of 20 to 100 N/mm2 by adjusting laser conditions. In case of deep holes the CW-mode should be chosen. Furthermore, by controlling laser irradiation conditions, it is possible to change the shape of the holes. These different kinds of holes are suitable for different applications. It is expected that laser irradiation drilling will be applied to new construction methods.
Deformations of R.C.Circular Slabs in Fire Condition Kassem, Abdelraouf Tawfik
Civil Engineering Journal Vol 4, No 4 (2018): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (934.756 KB) | DOI: 10.28991/cej-0309126

Abstract

Reinforced concrete slabs are elements in direct contact with superimposed loads, having high surface area and small thickness. Such a condition makes slabs highly vulnerable to fire conditions. Fire results in exaggerated deformations in reinforced concrete slabs, as a result of material deterioration and thermal induced stresses. The main objective of this paper is to deeply investigate how circular R.C. slabs, of different configurations, behave in fire condition. That objective has been achieved through finite element modelling. Thermal-structural finite element models have been prepared, using "Ansys". Finite element models used solid elements to model both thermal and structural slab behaviour. Structural loads had been applied, representing slab operational loads, then thermal loads were applied in accordance with ISO 843 fire curve. Outputs in the form of deflection profile and edge rotation have been extracted out of the models to present slab deformations. A parametric study has been conducted to figure out the significance of various parameters such as; slab depth, slenderness ratio, load ratio, and opening size; regarding slab deformations. It was found that deformational behaviour differs significantly for slabs of thickness equal or below 100 mm, than slabs of thickness equal or above 200 mm. On the other hand considerable changes in slabs behaviour take place after 30 minutes of fire exposure for slabs of thickness equals or below 100 mm, while such changes delay till 60 minutes for slabs of thickness equals or above 200 mm.
Analysis of Design Indicators of Sustainable Buildings with an Emphasis on Efficiency of Energy Consumption (Energy Efficiency) Damirchi Loo, Leila; Mahdavinejad, Mohammadjavad
Civil Engineering Journal Vol 4, No 4 (2018): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1327.653 KB) | DOI: 10.28991/cej-0309142

Abstract

Nowadays paying attention to sustainable development issues has been a priority for different countries, due to technological advances and increasing number of problems caused by neglecting the environment. Sustainable development is a new field that considers all the aspects of human life. One of important issues in this area is, considering the energy and efficient energy consumption and reducing the environmental consequences of its consumption. Sustainable design of buildings is also an example of sustainable development. The purpose of this study that has been conducted based on documents and library studies and analysis of samples that are built with the sustainable approach is to study and compare the fundamentals of investigated samples with the criteria of sustainable development. The result is that fundamentals of these buildings as architectural responses can help architectures challenges in different environmental conditions.
Effects of Coarse Aggregate Size on the Compressive Strength of Concrete Ogundipe, Olumide Moses; Olanike, Akinkurolere Olufunke; Nnochiri, Emeka Segun; Ale, Patrick Olu
Civil Engineering Journal Vol 4, No 4 (2018): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (626.019 KB) | DOI: 10.28991/cej-0309137

Abstract

This study investigates the effect of aggregate size on the compressive strength of concrete. Two nominal mixes, that is, 1:2:4 and 1:3:6 were used in the study. Concrete cubes were produced with 6, 10, 12.5, 20 and 25 mm aggregates for the two nominal mixes and they were subjected to compressive strength test after curing for 7, 21, 28 and 56 days. It was found in the study that the strength development follows the same trend for both nominal mixes. Also, the results show that the compressive strength increases with increasing aggregate size up to 12.5 mm, while the concrete produced using 20 mm had greater compressive strength than those produced using 25 mm aggregate. This established the importance of ensuring that the right aggregate size is used in the production of concrete. Therefore, it is recommended that careful attention must be paid to the sizes of aggregates used in the production of concrete for structural purposes.

Page 1 of 1 | Total Record : 4


Filter by Year

2018 2018


Filter By Issues
All Issue Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue