cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 20 Documents
Search results for , issue "Vol 10, No 12 (2024): December" : 20 Documents clear
Sensor Layout Design for Structural Health Monitoring Kyung, JungHyun; An, Jae-Hyoung; Eun, Hee-Chang
Civil Engineering Journal Vol 10, No 12 (2024): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-12-011

Abstract

This study investigates the enhancement of optimal sensor placement (OSP) algorithms by incorporating modal reduction constraints and developing combined techniques. The primary goal is to optimize sensor placement for structural health monitoring (SHM), thereby improving the efficiency of information acquisition within practical constraints. The proposed methodology utilizes iterative elimination and combined criteria to evaluate various sensor configurations. Numerical experiments demonstrate distinct sensor layouts derived from diverse algorithmic approaches. The study's novel contributions include the integration of modal strain energy, effective independence (EI), and modal assurance criterion (MAC) techniques into a unified framework, enhancing adaptability to a wide range of SHM scenarios. Doi: 10.28991/CEJ-2024-010-12-011 Full Text: PDF
Experimental Study on Strength and Performance of Foamed Concrete with Glass Powder and Zeolite Al-Khazaleh, Mahmoud; Krishna Kumar, P.; Qtiashat, Deya; Alqatawna, Ali
Civil Engineering Journal Vol 10, No 12 (2024): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-12-06

Abstract

Cement manufacturing accounts for approximately 7% of anthropogenic CO₂ emissions. To mitigate environmental impact and achieve “net zero” by 2050, developing cementitious materials that minimize cement consumption is crucial. This research aims to reduce cement usage in Foamed Concrete (FC). The study investigates the mechanical, durability, and thermal properties of FC using two distinct Supplementary Cementitious Admixtures (SCA): Glass Powder (GP) and natural zeolite. Cement was replaced with SCA at varying percentages (0%, 5%, 10%, 15%, 20%, and 25% by weight) in FC. The FC density was adjusted by incorporating foam at 15% and 30% of the total volume of concrete. The study evaluated the flowability of each mix in its fresh state. The mechanical properties were assessed by measuring compressive strength and ultrasonic pulse velocity. The performance of FC was further analyzed in terms of thermal conductivity, sorptivity, and water absorption. The test results revealed that FC with GP combinations exhibited high flowability and an improved strength-to-density ratio. Additionally, water absorption, sorptivity, and thermal conductivity were significantly reduced compared to conventional FC. An extensive cost-benefit analysis highlighted the feasibility of utilizing common waste materials to produce high-grade FC and assessed the impacts of cementitious admixtures as viable alternatives to cement. Doi: 10.28991/CEJ-2024-010-12-06 Full Text: PDF
An Advanced Adaptive Mesh for Beam-Column Finite Elements on Transient Dynamic Analysis Martinez, Edgar David Mora; Khaji, Naser
Civil Engineering Journal Vol 10, No 12 (2024): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-12-01

Abstract

This research examines the influence of truncation error reduction on the nonlinear dynamic analysis of complex framed structures. A modified -adaptive method, incorporating inertial and damping forces in addition to the common restitutive forces, is introduced to refine the mesh and enhance accuracy. To address convergence challenges arising from increased complexity, Ritz modal shapes are utilized to reconstruct the mass matrix, excluding detrimental modes. The proposed formulation is validated through rigorous computational models and experimental data. Six building case studies, varying in complexity, were analyzed using the modified -adaptive method. The results revealed substantial variations in frequency and displacement responses, ranging from 6% to 50% and 0.8% to 63%, respectively. These disparities underscore the significant influence of nonlinear behavior on structures with high-order shape functions. The proposed formulation is theoretically more accurate. Therefore, the findings emphasize the necessity of employing mesh refinement techniques to obtain accurate nonlinear dynamic analysis results, particularly for complex structures with pronounced nonlinear characteristics. This study contains the background of a software called MainModelingStr. Doi: 10.28991/CEJ-2024-010-12-01 Full Text: PDF
Earthquake Resistance of Masonry-Infilled RC Frames Strengthened with Expanded Metal Kusonkhum, Wuttipong; Tankasem, Phongphan; Leeanansaksiri, Anuchat
Civil Engineering Journal Vol 10, No 12 (2024): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-12-017

Abstract

This research aimed to investigate the compressive strength of lightweight concrete walls before and after reinforcement using the expanded metal reinforced with ferrocement jacketing method and to evaluate the performance level of lightweight concrete walls in reinforced concrete rigid frames. Masonry infill walls were tested using seven samples of lightweight concrete with an average size of 600×600 mm under axial force. The study results were found that in the part of control, non-plastered lightweight concrete wall (CWL) bore an average compressive strength of 2.52 MPa, and plastered lightweight concrete (WPL) bore an average compressive strength of 2.95 MPa. It indicated that plastering on masonry infill walls was able to bear higher impact strength at 1.17 times due to the bonding force of plastering cement at the masonry infill wall. Lightweight concrete walls reinforced with expanded metal, which were able to bear the maximum compressive strength, were lightweight concrete walls reinforced with 1 layer of expanded metal (WPL-E1) that bore the maximum compressive strength capacity, which was equal to 6.40 MPa. When compared with plastered lightweight concrete walls (WPL) samples, masonry infill walls had 2.16 times higher strength capacity. It was shown that reinforcement using the ferrocement technique significantly increased compressive strength capacity. However, in this research, WPL samples, the plastered lightweight concrete walls, were selected as the control samples, and WPL-E1 test samples with the highest compressive strength were used to evaluate the performance level of the reinforced concrete rigid frame. It was found that lightweight concrete walls reinforced with expanded metal were able to bear higher strength at 1.92 and 3.66 times, respectively. When compared to unreinforced masonry infill wall samples and the bare rigid frame, reinforcement with expanded metal effectively was able to increase the strength and stiffness of the reinforced concrete rigid frame. Doi: 10.28991/CEJ-2024-010-12-017 Full Text: PDF
Study on Pull-Up Behavior of Double Fold Anchor with Field Full Scale Test Hendrawan, Agus J.; Harianto, Tri; Djamaluddin, A. R.; Muhiddin, Ahmad B.
Civil Engineering Journal Vol 10, No 12 (2024): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-12-012

Abstract

Several studies have been conducted on the use of anchors, including numerical analysis, experimental testing, and field-scale testing. These studies have provided insights into anchor behavior in terms of pull-up capacity and soil failure models under tensile loading. Specifically, for the use of anchors in cohesive or soft soils, it is possible to innovate by using anchor elements with various dimensional or surface area changes. This research aims to design anchors for cohesive soils that can be easily applied in the field and have high tensile capacity, determine the pull-up capacity of double-fold type ground anchors, and analyze the effect of the depth of double-fold anchors. The results of pullout and tensile capacity testing on double-fold anchors showed significant variations at each test location. At the first location, Sungai Kariango, high tensile capacity occurred at relatively shallow embedment depths, influenced by the type and bearing capacity of the soil at the test site. At the second location, although the soil was relatively soft, the tensile capacity was similar to the first location but with deeper embedment depths. At the third location, the consistency of soil type and soil strength at the two test points resulted in similar tensile capacities. This indicates that the type and strength, or bearing capacity, of the soil at the test site, as depicted by cone resistance parameters (qc), significantly affect the tensile capacity of the anchor. The better the soil strength and bearing capacity at the test site, the greater the tensile capacity of the anchor that can be achieved. A deep understanding of soil characteristics through CPT is essential in determining the design and embedment depth of anchors to achieve optimal tensile capacity. Through this research, it is expected to obtain optimal tensile capacity results for anchors and develop a double-fold type ground anchor model that is easy to install in the field, suitable for various structures with high tensile loads, and susceptible to uplift in soft soil layers. Doi: 10.28991/CEJ-2024-010-12-012 Full Text: PDF
Comparison of Multi-Objective Metaheuristics for Discrete Optimization of Steel Trusses Using Direct Analysis Tran, Trung-Hieu; Vu, Quoc-Anh; Truong, Viet-Hung; Nguyen, Ngoc-Thang
Civil Engineering Journal Vol 10, No 12 (2024): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-12-07

Abstract

This study enriches structural optimization research using direct analysis for steel truss structures, which is often hampered by high computational demands. The main objective of this work is to evaluate multi-objective optimization algorithms in truss sizing optimization with discrete variables, focusing on minimizing total mass and controlling inter-story drift under multiple load combinations. Five leading multi-objective metaheuristic algorithms were assessed: SPEA2, GDE3, NSGA2, MOEA/D, and the novel MOEA/D-EpDE, which uniquely combines MOEA/D with Dynamical Resource Allocation and pbest Differential Evolution. Four performance indicators, such as Generational Distance (GD), GD Plus (GD+), Inverted GD+ (IGD+), and Hypervolume (HV), were utilized. Findings from four truss optimization problems revealed that all considered algorithms located feasible optimal solutions, but MOEA/D-EpDE excelled, consistently securing the lowest GD, GD+, IGD+, and anchor point values, along with the highest HV values in most scenarios. This indicates its superior capability in addressing the problem efficiently. NSGA2 and MOEA/D also performed well, outperforming GDE3 and SPEA2. This study is pioneering in its application of these algorithms to steel truss optimization via direct analysis, highlighting the potential for advanced computational techniques in structural engineering. Doi: 10.28991/CEJ-2024-010-12-07 Full Text: PDF
Evaluation and Restoration of Corrosion-Damaged Post-Tensioned Concrete Structures Alsuwaidi, Hadif; Al-Sadoon, Zaid A.; Altoubat, Salah; Barakat, Samer; Junaid, M. Talha; Maalej, Mohamed; Metawa, Abdulrahman; Habib, Ahed
Civil Engineering Journal Vol 10, No 12 (2024): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-12-02

Abstract

This study addresses the pressing issue of chloride-induced corrosion in post-tensioned (PT) concrete structures, known for their strength and flexibility yet vulnerable to durability issues in extreme climates. The objective is to evaluate corrosion mechanisms in a PT building in the United Arab Emirates and develop a robust restoration strategy. Using a combination of nondestructive and semi-destructive testing methods, this research identifies severe deterioration in critical structural elements, such as steel tendons, PT ducts, and concrete surfaces, largely due to high chloride exposure and aggravated by environmental factors like acid rain and fluctuating temperatures and humidity. The findings reveal serious inadequacies in current maintenance practices, often overlooking long-term corrosion risks in harsh climates. In response, this study proposes a comprehensive repair strategy, including removing damaged materials and applying advanced repair products, protective coatings, and waterproofing measures to enhance the structure's durability. This case study highlights significant concerns regarding structural integrity and provides practical insights into effective maintenance and repair strategies for PT structures. By offering a targeted, sustainable intervention approach, this research contributes to developing PT maintenance protocols, particularly in regions prone to aggressive corrosion, ensuring the longevity and safety of these critical structures. Doi: 10.28991/CEJ-2024-010-12-02 Full Text: PDF
Evaluation of Skirt-Raft Foundation Performance Adjacent to Unsupported Excavations Ahmed, Balqees A.; Saleh, Husam M.; Jameel, Mina M.; Al-Taie, Asmaa
Civil Engineering Journal Vol 10, No 12 (2024): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-12-018

Abstract

The continuous demand for urban development, along with the construction of new buildings, highways, and infrastructure, creates an increasing necessity for excavation activities. Deep excavation near existing buildings can lead to ground instability, potentially causing structural damage to nearby properties. This research aims to investigate methods for enhancing buildings stability from the initial stages of construction, focusing on protecting structures from potential future adjacent excavations. This study utilizes a skirt-raft foundation system, modeled using the finite element software PLAXIS 3D, to evaluate its effectiveness in improving stability and protection. The study analyzed the behavior of raft foundations in clay soil adjacent to excavations ranging from 1 m to 10 m and compared this with the performance of raft foundations with added skirt foundations. The comparison focused on settlement, rotation, and lateral movement of the excavations to assess potential building damage. The results showed that incorporating a skirt foundation significantly enhanced structural stability and reduced excavation-related damage. The implementation of a skirt foundation to a depth of 0.5B (where B is the foundation width) for excavations of similar depth has been shown to significantly reduce damage levels from medium or high to light while also decreasing differential settlement by 80%. It is recommended that adjacent excavation depths should not exceed 0.25B. However, if a skirt foundation is constructed at a depth of 0.5B, the excavation depth can be safely extended to 0.75B. Doi: 10.28991/CEJ-2024-010-12-018 Full Text: PDF
Optimizing Mortar Mixtures with Basalt Rubble: Impacts on Compressive Strength and Chloride Penetration Rukzon, Sumrerng; Rungruang, Suthon; Thepwong, Ronnakorn; Chaisakulkiet, Udomvit; Chindaprasirt, Prinya
Civil Engineering Journal Vol 10, No 12 (2024): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-12-013

Abstract

This research aims to establish a theoretical framework for developing binders from waste materials to reduce cement use in mortar production. It specifically examines the potential of ground basalt rubble (BS) as a supplementary binding material for partially replacing Portland cement Type 1 (OPC) in mortar mixtures. Various substitution ratios of BS, specifically 0%, 10%, 20%, 30%, and 40% by binder weight, were tested while maintaining a constant water-to-binder ratio (W/B) of 0.45. Superplasticizers (SP) were utilized to ensure consistent workability and flow of the mixtures. The SEM-EDS analysis was conducted to examine the microstructure of the cement paste, confirming the presence of calcium silicate hydrate (C-S-H) phases resulting from the pozzolanic reactions of BS. The findings showed that, at the 7-day test, replacing cement with 10% and 20% basalt rubble (BS) by weight of the binder yielded compressive strengths of 97% and 92% compared to the control (CT) mortar. In contrast, replacements of 30% and 40% BS resulted in compressive strengths of 72% and 60% of the CT mortar, respectively. Results from 28-day tests showed that replacing 10% of OPC with BS not only increased the compressive strength but also significantly decreased chloride penetration compared to the control mortar (CT). This enhancement suggests that BS can effectively replace 10%-20% of cement, with the compressive strength of the mortar ranging from 92% to 107% of that of the control. The findings accentuate the potential of using industrial by-products such as ground basalt rubble to reduce waste, alleviate environmental impacts, and promote the development of sustainable construction materials. Doi: 10.28991/CEJ-2024-010-12-013 Full Text: PDF
Rainfall-Runoff Modeling in a Regional Watershed Using the MIKE 11-NAM Model Saad, Alaa Hashim; Khayyun, Thair S.
Civil Engineering Journal Vol 10, No 12 (2024): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-12-08

Abstract

This study used the MIKE 11 NAM model to model stormwater runoff in a northern Iraqi regional watershed of the Greater Zab River. During model calibration (2003-2017), observed data on streamflow, evaporation, and rainfall were used to optimize the nine model parameters. In order to validate the model, independent data covering the years 2018 through 2022 was used. The model's efficacy was evaluated using statistical performance metrics, including the coefficient of determination (R2), Nash Sutcliffe efficiency coefficient (NSE), and Root Mean Square Error (RMSE). During calibration (NSE = 0.81, RMSE = 2.2, and R² = 0.82) and validation (NSE = 0.90, RMSE = 6.9, and R² = 0.93), the model's performance demonstrated good agreement between simulated runoff and observed. The good agreement was for the low stream flow values compared to the high ones, due to the low number of parameters, which makes it easier to calibrate. Often, hydrological models do not capture peak flow phenomena, but there is a tendency for a good estimate of the low and medium stream flow values. Approximately 69% of the nutrient flow into the basin originated from the catchment area, which lies inside Iraq, while the remaining 31% came from the Turkey watershed. Future hydrological modeling in the area at the watershed level can utilize this model. Doi: 10.28991/CEJ-2024-010-12-08 Full Text: PDF

Page 1 of 2 | Total Record : 20


Filter by Year

2024 2024


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue