cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 16 Documents
Search results for , issue "Vol 3, No 12 (2017): December" : 16 Documents clear
Modeling the Completion Time of Public School Building Projects Using Neural Networks Khaled, Zeyad S. M.; Abid Ali, Raid S.; Hasan, Musaab Falih
Civil Engineering Journal Vol 3, No 12 (2017): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1184.872 KB) | DOI: 10.28991/cej-030956

Abstract

The Ministry of Education in Iraq is confronting a colossal deficiency in school buildings while stakeholders of government funded school buildings projects are experiencing the ill effects of extreme delays caused by many reasons. Those stakeholders are particularly worried to know ahead of time (at contract assignment) the expected completion time of any new school building project. As indicated by a previous research conducted by the authors, taking into account the opinions of Iraqi experts involved with government funded school building projects, nine major causes of delay in school building projects were affirmed through a questionnaire survey specifically are; the contractor's financial status, delay in interim payments, change orders, the contractor rank, work stoppages, the contract value, experience of the supervising engineers, the contract duration and delay penalty. In this research, two prediction models (A and B) were produced to help the concerned decision makers to foresee the expected completion time of typically designed school building projects having (12) and (18) classes separately. The ANN multi-layer feed forward with back-propagation algorithm was utilized to build up the mathematical equations. The created prediction equations demonstrated a high degree of average accuracy of (96.43%) and (96.79%) for schools having (12) and (18) classes, with (R2) for both ANN models of (79.60%) and (85.30%) respectively. It was found that the most influential parameters of both models were the ratio of the sum of work stoppages to the contract duration, the ratio of contractor's financial status to the contract value, the ratio of delay penalty to the total value of contract and the ratio of mean interim payments duration to the contract duration.
Risk Response Selection in Construction Projects Hafeth I. Naji; Rouwaida Hussein Ali
Civil Engineering Journal Vol 3, No 12 (2017): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (640.997 KB) | DOI: 10.28991/cej-030950

Abstract

Risk and its management  is  important  for the success of the project, the  risk management, which encompassed of planning, identification, analysis, and response has an important phase, which is risk response  and it should not be undermined, as its  success going to  the projects  the capability  to overcome the  uncertainty and  thus an effective  tool in project risk management, risk response used the collective information in the analysis stage and in order  to take decision how to improve the possibility to complete the project within time, cost and performance. This stage work on preparing the response to the main risks and appoint the people who are responsible for each response.  When it's needed risk response may be started in quantitative analysis stage and the repetition may be possible between the analysis and risk response stage. The aim of this research is to provide a methodology to make the plane for unexpected events and control uncertain situations and identify the reason for risk response failure and to respond to risk successfully by using the optimization method to select the best strategy. The methodology of this research divided into four parts, the first part main object is to find the projects whose risk response is failed, the second part includes the reasons for risk response Failure, the third part includes   finding   the most important risks generated from risk response that leads to increasing the cost of construction projects, the fourth part of the management system is selecting the optimal risk response strategy. An optimization model was used to select the optimal strategy to treat the risk by using Serval constraints such as the cost of the project, time of the project, Gravitational Search Algorithm and particle swarm used. The result of the risk response selection shows that The investment (contractor, bank) strategy shows a very good strategy as it saves the cost about 30%, while the Mitigate (pay for advances with interest 0. 1) Strategy show saving the cost 40%   and giving land to contractors show saving the cost 40% finally the BIM strategy show saving the cost 25%. The risk response is an important part and should give a great attention and it must be used sophisticated method to select the optimal strategy, the two techniques both show high efficiency in selecting the strategy but Gravitational Search Algorithm show better performance.
Testing a Measurement Model of BIM Potential Benefits in Iraqi Construction Projects Wadhah Amer Hatem; Abbas Mahde Abd; Nagham Nawwar Abbas
Civil Engineering Journal Vol 3, No 12 (2017): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1464.728 KB) | DOI: 10.28991/cej-030963

Abstract

Building Information Modeling (BIM) is an integrated and comprehensive system for all that related to the construction project, which includes a set of effective policies, procedures, and computer applications that increase the performance of the project during its life cycle. The objective of this research develops a clear concept about the BIM adoption in Iraq through investigating potential benefits that can be obtained through its application in construction projects also build a measurement model for these benefits. The research methodology was based on quantitative approach which adopted by conducting a questionnaire directed to professionals in the field of construction projects in the public and private sectors supported by personal interviews with respondents either individually or in groups. Three hundred copies of the forms were distributed to the companies, firms and engineering departments of the various ministries of the state. After the data was obtained, two software (SPSS and SmartPLS) was used for analyzing the data and constructing the measurement model. The results showed of all the benefits constructed within three key components. The first is knowledge support for management in term of (costs, data, processes), the second is effective design performance and the third is effective construction performance and all these components were modeled as a measurement model.
Changing Furrow Irrigation to Increase Efficiency and Feasibility Study of Reusing Surface Runoff Ehsan Dayer; Ebrahim Pazira; Heydar Ali Kashkuli; Hossein Sedghi
Civil Engineering Journal Vol 3, No 12 (2017): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1185.584 KB) | DOI: 10.28991/cej-030957

Abstract

To improve irrigation techniques and the utilization of available water resources in Iran, a first steps re evaluation of traditional irrigation methods. To assess the efficiency of furrow irrigation, a 4-ha plot (87 furrows) cultivated with sugarcane was evaluated in Khuzestan Province. The quantities of inflow, outflow runoff, soil moisture before irrigation, depth of root development and depth of water infiltration were measured and thus the values of water use efficiency, uniformity coefficient, and distribution uniformity were determined for the selected plot. Using Geographical Information System, in ArcView, the irrigation efficiency of its levels were analyzed using two furrow irrigation methods: open and closed-end. The results showed that the irrigation efficiency, uniformity coefficient and distribution uniformity for the open-end than the closed-end method. The prevention of deep infiltration losses (approximately 30% lower than for closed-end) and allowing outflow of end runoff, and depending on water quality, the riffle can be considered ideal for irrigating other surfaces.
Analysis of Rake Angle Effect to Stress Distribution on Excavator Bucket Teeth Using Finite Element Method Suryo, Sumar Hadi; Bayuseno, A. P.; Jamari, J.; Wahyudi, A. Imam
Civil Engineering Journal Vol 3, No 12 (2017): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1041.984 KB) | DOI: 10.28991/cej-030952

Abstract

Excavator is mostly used for mining and construction. This heavy equipment, widely known as a backhoe, is a digging machine commonly used for dredging the mining materials, digging and leveling the soil, dredging the river, removing the road and demolition. Excavator has bucket teeth, component that frequently undergoes a change. The replacement of bucket teeth is performed due to its low usage time and many failure experiences such as wear, bend, crack and facture during the use. To prevent the occurrence of the failures, a structural analysis on bucket teeth is necessarily conducted. The analysis was conducted to find the stress distribution on bucket teeth from the rake angle effect during the excavation. The analysis was performed using finite element method by static loading and two-dimensional modeling to determine digging and resistive force in bucket teeth. Based on the analysis, it was obtained the stress distribution and maximum value of von misses occurring in the bucket teeth from the rake angle effect. The maximum stress, obtained from the analysis results, was then compared to the allowable stress of the bucket teeth material. The results showed that the materials used were in safe limits and had small potential for experiencing failure as well.
Experimental and Numerical Study of Nano-Silica Additions on the Local Bond of Ultra-High Performance Concrete and Steel Reinforcing Bar Ahad Amini Pishro; Xiong Feng
Civil Engineering Journal Vol 3, No 12 (2017): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1035.2 KB) | DOI: 10.28991/cej-030962

Abstract

Micro-silica is widely used as an additive to cement in producing high performance concrete. This matter is used to enhance the strength and efficiency of concrete. Recently, due to the development of advanced nano-technology, nano-silica has been produced with particle sizes smaller than micro-silica and higher pozzolanic activity. Studies show that addition of nano-silica into cement-based materials improves their mechanical properties. Considering the unique characteristics of nano-silica, it seems that this material can be used in ultra-high performance concrete (UHPC). Therefore, further studies are needed on how the local bond and bond stress of steel reinforcing bar and UHPC containing nano-silica would be effected. In the present study, after preparing the mix designs and proposed specimens, the effects of various parameters on the local bond of steel reinforcing bars and UHPC containing nano-silica were examined by pullout experiments. In this research, we have numerically investigated the bond strength using numerical methods and calibration of the ABAQUS results in addition to its experimental study of ultra-high performance concrete and steel reinforcement. In numerical analysis, the concrete damage plasticity method was used to simulate the nonlinear behavior of concrete and its strain softness. Comparing between numerical and experimental analysis results shows that numerical analysis with high precision can predict the bond stress, bond load, and concrete specimen fracture mode.
Investigating the Causes of Delay in Construction of Urban Water Supply and Wastewater Project in Water and WasteWater Project in Tehran Shahdad Feyzbakhsh; Abdolrasul Telvari; Ali Reza Lork
Civil Engineering Journal Vol 3, No 12 (2017): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (691.346 KB) | DOI: 10.28991/cej-030958

Abstract

It is obvious that providing drinking water in cities, especially in metropolises such as Tehran, as a political-social-economic center of the country is important. During the last decades, climatic changes, the decrease of raining, the increase of water harvesting from groundwater as well as the increase of population have intensified the importance of water in Tehran. Therefore, every change from water consumption to collecting, purifying and storing drinking water in the city reservoirs is highly critical. In the present study, the causes of delay in such projects have been determined based on experts' opinions about several concrete implemented reservoirs obtained by questionnaire and the related literature. Given to three classes pertained to such projects (employer, consultant and contractor), an initial questionnaire was provided to poll the experts' opinions and distributed among the sample of the study. In this regard, 45 Likert-scale questionnaires were equally distributed among three population; after gathering, the items with higher mean scores were selected for the main questionnaire (totally, 17 items). Using AHP method, the most important factors were identified and ranked through Expert choice Software. As the research findings revealed, failure of employer to pay to contractor timely, failure to obtaining the necessary permissions by employer before noticing to contactor to proceed, and uncertainty and buying project site by employer are the most important factors respectively.
Experimental Study on Bond Stress between Ultra High Performance Concrete and Steel Reinforcement Ahad Amini Pishro; Xiong Feng
Civil Engineering Journal Vol 3, No 12 (2017): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1107.444 KB) | DOI: 10.28991/cej-030953

Abstract

Due to axial deformations generally caused by flexure, shear stress will be generated across the interface between reinforcement and surrounding concrete. This longitudinal shear stress is called bond stress and coordinates deformation between concrete and reinforcement. With increasing a member's axial deformation, bond stress finally reaches its ultimate value, bond strength, after which deformation of reinforcement and surrounding concrete will be not coordinated any more. Studies have shown that addition of nanosilica into cement-based materials improves their mechanical properties. Considering the unique characteristics of nanosilica, it seems that this material can be used in ultra-high performance concrete. Therefore, further research is needed on how to use it in concrete mixes. Due to the importance of examining bond stress and the lack of exact equations for bond stress of ultra-high performance concrete and steel reinforcement, the present study aimed to assess the bond stress between concrete and steel reinforcement.
A Cell Centered Finite Volume Formulation for the Calculation of Stress Intensity Factors in Mindlin-Reissner Cracked Plates Abuzar Amraei; Nosratollah Fallah
Civil Engineering Journal Vol 3, No 12 (2017): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1684.14 KB) | DOI: 10.28991/cej-030951

Abstract

In fracture analysis, the stress intensity factor (SIF) is an important parameter which is needed for describing the stress state at crack tip. In this paper a finite volume formulation is developed for calculating the stress intensity factor (SIF) in Mindlin-Reissner plates with a through-the-thickness crack (through crack). For approximating the field variables and its derivatives the moving least square (MLS) technique is utilized. The problem domain is discretized into a mesh of elements where each element is considered as a control volume (CV). The center of CVs are considered as computational points where the unknown variables are associated with. The equilibrium equations of each CV are written based on the stress resultant forces acting on the boundaries of CV where the first order shear deformation theory (FSDT) is implemented in the formulation. Some benchmark problems of plate with through cracks are solved by the present method and the obtained results are compared with the results of analytical and XFEM numerical methods in order to demonstrate the accuracy of the present formulation. These comparisons illustrate the accuracy of predictions of the present solution method. Nevertheless, it is found that the formulation is free of shear locking property which greatly facilitates the cracked plates analysis due to its dual capabilities of analyzing both thin and moderately thick cracked plates.
Protecting River Environment through Proper Management of Material Mining by Matrix Method (Case Study of Ala River in Iran) Azarang, Farhang; Jafari, Ghazal; Karami, Maryam; Shafaie Bejestan, Mahmood
Civil Engineering Journal Vol 3, No 12 (2017): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1400.229 KB) | DOI: 10.28991/cej-030959

Abstract

Regarding the importance of rivers, appropriate management of aggregate mining is of great significance. Mining of river materials has a direct impact on environmental conditions of the river. Today, aggregate mining management represents a crucial topic in river engineering. Often selected based on the pattern of the considered river, matrix method provides a suitable approach to improve the river aggregate mining management. The present research aims at presenting the application of the matrix method in river material mining location evaluation. Given the capabilities of the matrix method for determining potential of mine area and aggregate mining method, this method can be seen as a suitable solution for reducing negative environmental impacts of river material mining. Ala River is one of the most important rivers streaming in Khouzestan Province (Iran), with its sediment load and mining potential being of critical importance. In this research, the reach of Ala River at the intersection of Rood-Zard River and Rahmhormoz diversion dam was studied for aggregate mining and application of matrix method. The main purpose of this work is to study the application of matrix method to Ala River. The results indicate braided pattern of the river and appropriateness of the matrix method. Available volume of aggregate for mining within the mentioned reach of Ala River was estimated as 50,000 m3, and scraping method at a maximum depth of 1 m was proposed for mining of the aggregates.

Page 1 of 2 | Total Record : 16


Filter by Year

2017 2017


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue