cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 9 Documents
Search results for , issue "Vol 3, No 8 (2017): August" : 9 Documents clear
Absorption Characteristics of Lightweight Concrete Containing Densified Polystyrene Herki, Bengin
Civil Engineering Journal Vol 3, No 8 (2017): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1130.851 KB) | DOI: 10.28991/cej-2017-00000115

Abstract

The environmental impacts of the construction industry can be minimised through using waste and recycled materials to replace natural resources. Results are presented of an experimental study concerning capillary transport of water in concrete incorporating densified expanded polystyrene (EPS) as a novel aggregate. A new environmentally friendly technique of densifying was used to improve the resistance to segregation of EPS beads in concrete. Twelve concrete mixes with three different water/cement ratios of 0.6, 0.8 and 1.0 with varying novel aggregate content ratios of 0, 30, 60 and 100% as partial replacement for natural aggregate by equivalent volume were prepared and tested. Total absorption, absorption by capillary action, and compressive strength was determined for the various concrete mixes at different curing times. The results indicated that there is an increase in total water absorption (WA) and capillary water absorption (CWA) and a decrease in compressive strength with increasing amounts of the novel aggregate in concrete. However, there is no significant difference between the CWA of control and concretes containing lower replacement level.
Some New Correlations of Q-Value with Rock Mechanics Parameters in Underground Oil Storage Caverns Fang Lin; Hebing Luan; Yanhua Zeng; Zhibin Zhong
Civil Engineering Journal Vol 3, No 8 (2017): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (971.106 KB) | DOI: 10.28991/cej-2017-00000111

Abstract

Q-system is a preferred alternative method of rock mass classification for underground oil storage caverns where stable lithological rocks are widely distributed. In this paper, correspondences between important input rock mechanics parameters (friction angle, cohesion, tensile strength, Poisson’s ratio, deformation modulus) and Q values were investigated, thereby bringing convenient to rapidly obtain available parameters when it’s hard to collect measured field data in underground storage projects basically with similar lithology. The proposed correlations were verified through numerical simulation and on-site monitoring measurement. In addition, comparison of different criteria among Q-system and other codes for rock mass classification has been made to help for making a preliminary evaluation of rock mass quality in the practical engineering. Finally, the behaviours of surrounding rock deformations under different Q values were analysed by using FLAC3D code with the calculating parameters suggested in this paper, and the calculation results match well with measured values in situ. Above results will not only guide the construction but also could be relevant to other underground storage engineering under similar geological conditions.
Effect of Compaction Energy on Engineering Properties of Expansive Soil Sadam Hussain
Civil Engineering Journal Vol 3, No 8 (2017): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (442.623 KB) | DOI: 10.28991/cej-030988

Abstract

Swelling of expansive clays is one of the great hazards, a foundation engineer encounters. Each year expansive soils cause severe damage to residences, buildings, highways, pipelines, and other civil engineering structures. Strength and deformation parameters of soils are normally related to soil type and moisture. However, surprisingly limited focus has been directed to the compaction energy applied to the soil. Study presented herein is proposed to examine the effect of varying compaction energy of the engineering properties i.e. compaction characteristics, unconfined compressive strength, California bearing ratio and swell percentage of soil. When compaction energy increased from 237 KJ/m3 to 1197 KJ/m3, MDD increased from 1.61 g/cm3 to 1.75 g/cm3, OMC reduced from 31.55 percent to 21.63 percent, UCS increased from 110.8 to 230.6 KPa, and CBR increased from mere 1 percent to 10.2 percent. Results indicate substantial improvement in these properties. So, compacting soil at higher compaction energy levels can provide an effective approach for stabilization of expansive soils up to a particular limit. But if the soil is compacted more than this limit, an increase in swell potential of soil is noticed due to the reduction in permeability of soil.
Transient Behavior of CFRP Tensegrity System in a Suspen dome IfeOlorun Olofin; Ronggui Liu
Civil Engineering Journal Vol 3, No 8 (2017): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (701.558 KB) | DOI: 10.28991/cej-2017-00000112

Abstract

In order to establish a conclusive result for the application of carbon fibre reinforced polymer (CFRP) cable as a tensegrity system for a suspen dome, the structural integrity assessment of the system, subjected to transient load, must be considered. This paper gives a preliminary assessment of the dynamic behavior of carbon fibre reinforced polymer cable in a suspen dome in comparison with that of the steel counterpart, using a small model of 4 m span and 0.4 m rise. A commercial finite element software namely ANSYS was used for the structure simulation in respect of the experimental design. The results from the simulation show that the carbon fibre reinforced polymer cable gives a reliable assessment as the steel counterpart. The natural frequencies of CFRP cables are higher than those of steel cables due to the CFRP cables’ high stiffness-to-weight ratio and less curvature under gravity loads. CFRP cables influence the structure with good stiffness which provides good vibration resistance. The results also indicate that from a technical point of view, carbon fibre reinforced polymer cables can perform better than steel cables as tensegrity system for a suspen dome. It is concluded that CFRP cables can be applied to replace steel ones as tensegrity system for a suspen dome.
Integrated Metaheuristic Differential Evolution Optimization Algorithm and Pseudo Static Analysis of Concrete Gravity Dam Taher Memarian; Yaser Shahbazi
Civil Engineering Journal Vol 3, No 8 (2017): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (886.429 KB) | DOI: 10.28991/cej-2017-00000116

Abstract

A differential evolution-algorithm-based optimum design method is presented for concrete gravity dams under stability, principal stress, and sliding constraints. A gravity dam is a large scale hydraulic structure providing its stability based on weight of concrete volume. Hence, optimization of dam cross-section leads to an economic and low cost structure. For this aim, a general dam section is reconstructed with seven proper horizontal and vertical geometric parameters which take into account all possible cross section shapes. Weight of dam is considered as goal function and the optimization problem of geometric parameters is solved using DE algorithm. The DE algorithm written as a MATLAB code are applied to Four benchmark gravity dams including Middle Fork, Richard, Pine Flat, and Friant. The comparison of DE optimum solutions with real dimension of dams and another optimization method in literature shows the performance of the DE algorithm. In mentioned benchmark dams, there are 26.82%, 30.11%, 25.31%, and 20.93% of weight reduction Compared to real values, respectively. Also, optimization results of DE algorithm are compared with literatures. The comparison shows 3.55%, 5.1%, 19.13% and 12.14% reduction of weight compared to GA and PSOD algorithms, respectively.
Application of Support Vector Machine and Gene Expression Programming on Tropospheric ozone Prognosticating for Tehran Metropolitan Vahid Mehdipour; Mahsa Memarianfard
Civil Engineering Journal Vol 3, No 8 (2017): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1036.259 KB) | DOI: 10.28991/cej-030984

Abstract

Air pollution became fatal issue for humanity and all environment and developed countries unanimously allocated vast investments on monitoring and researches about air pollutants. Soft computing as a novel way for pollutants prediction can be used for measurement tools calibration which can coincidently decrease the expenditures and enhance their ability to adapt quickly. In this paper support vector machine (SVM) and gene expression programming (GEP) as two powerful approaches with reliable results in previous studies, used to predict tropospheric ozone in Tehran metropolitan by using the photochemical precursors and meteorological parameters as predictors. In a comparison between the two approaches, the best model of SVM gave superior results as it depicted the RMSE= 0.0774 and R= 0.8459 while these results of gene expression programming, respectively, are 0.0883 and 0.7938. Sensitivity of O3 against photochemical precursors and meteorological parameters and also for every input parameter, has been analysed discreetly and the gained results imply that PM2.5, PM10, temperature, CO and NO2 are the most effective parameters for O3 values tolerances. For SVM, several kernel tricks used and the best appropriate kernel selected due to its result. Nonetheless, gamma and sin2 values varied for every kernel and in the last radial basis function kernel opted as the best trick in this study. Finally, the best model of both applications revealed, and the resulted models evaluated as reliable and acceptable.
Investigation of to the Effect of Bedrock Stiffness on Seismic Behaviour of Roller Compacted Concrete Dam Mohammad Jalali; Majid Pasbani Khiavi; Mortaza Ali Ghorbani
Civil Engineering Journal Vol 3, No 8 (2017): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1079.769 KB) | DOI: 10.28991/cej-2017-00000117

Abstract

In this research, the effect of bedrock stiffness on seismic performance of roller compacted concrete (RCC) dam is evaluated using probabilistic analysis. Due to the geometry and behavior of RCC dams, a two-dimensional modeling was selected for system. Ansys software is used for modeling and analysis of dam-reservoir- foundation system. Newmark implicit time integration scheme is developed to solve the time-discretized equations which are an unconditionally stable method. The Watana dam, due to San Fernando earthquake has been selected as a case study. In order to propagate the parametric sensitivity to the seismic performance of the system, Monte Carlo simulation with Latin hypercube sampling (LHS) method is used as a probabilistic method and uncertainty analysis. The sensitivity of responses under seismic loading is reliably examined utilizing different values of ratio of bedrock stiffness to body concrete stiffness as random inputs. Consider to obtained results, it is revealed that the bedrock stiffness how can effect on seismic behavior of concrete gravity dams due to earthquake. Regarding the safety of dams due to compressive stresses, various ways have been assessed to investigate the induced tensile stress in the heel and the results have been investigated. Finally, appropriate range of the ratio of bedrock stiffness to concrete stiffness of dam body is presented to assess the safety design.
Seismic Performance of High-Rise RC Shear Wall Buildings Subjected to Ground Motions with Various Frequency Contents Anoushiravan Afzali; Alireza Mortezaei; Ali Kheyroddin
Civil Engineering Journal Vol 3, No 8 (2017): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1728.32 KB) | DOI: 10.28991/cej-2017-00000113

Abstract

Construction of tall buildings in societies is rising up for the increased population and limitation in horizontal expansion of cities. Therefore, behavior of these structures against earthquake essentially requires investigation. Recent research has shown that frequency content parameter of an earthquake has remarkable impacts on seismic response of buildings. This study aimed to investigate direct effects of frequency content on high – rise buildings. Thus, six Reinforced Concrete (RC) central core 10, 15, 20, 25, 30, and 35- story buildings were built in open source software OpenSees, and their seismic behavior under seismic records with various frequency contents were investigated. In this research,  non – linear dynamic Time – History was carried out and also behavior of buildings was compared in drift, shear force of stories, and maximum displacement of stories. Results of Time – History analysis showed that low – frequency content records have the highest effects on buildings. Most of the responses of drift and displacement of stories pertained to low – frequency contents in low – rise 10 and 15-story buildings. Although the most shear force of stories was related to low – frequency contents, with increasing height of buildings, shear force of stories increased, too. So that under Kobe Japan record which has the lowest frequency content among all records in this paper. Maximum shear force of stories was 6840 ton in 10-story building, whereas it was 12332 ton in 35- story building.
Deformation Characteristics of Sand Geofoam Blocks using Large-Scale Oedometer Apparatus Reza Jamshidi Chenari; Alireza Firoozfar; Shekofeh Attari; Ardavan Izadi; Seyed Ebrahim Shafiei
Civil Engineering Journal Vol 3, No 8 (2017): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1124.404 KB) | DOI: 10.28991/cej-2017-00000114

Abstract

As a lightweight fill material, expanded polystyrene (EPS) geofoam block has been successfully utilized in geotechnical applications due to its low density and high compressive strength. Understanding the modulus of elasticity and compressibility coefficient of sand-EPS is an aspect that has not been fully understood which may have a significant effect on the design and construction of geotechnical structures. In this study, an attempt has been made to understand the behavior of deformation characteristic parameters of sand-geofoam block combinations with different patterns, using a newly designed and fabricated large-scale oedometer apparatus. The influence of both different combinations of sand-EPS geofoam and relative densities of soil, on the stress-strain behavior and coefficient of volume compressibility under controlled conditions, are experimentally studied. Specimens of EPS geofoam with a density of 8 kg/m3 were tested in relative densities of 35% and 70% of sand under six different overburden pressures of 50 kPa, 100 kPa, 150 kPa, 200 kPa, 250 kPa, and 300 kPa. From the experimental results, it is observed that the settlement and volume compressibility coefficient substantially increased, as the thickness of EPS geofoam increases. Furthermore, utilization of thinner EPS layers with the constant volume fraction ratio of EPS led to the greater settlement.

Page 1 of 1 | Total Record : 9


Filter by Year

2017 2017


Filter By Issues
All Issue Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue