cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 19 Documents
Search results for , issue "Vol 4, No 4 (2018): April" : 19 Documents clear
The Effectiveness of Fly Ash as a Substitute of Cement For Marine Concrete Naibaho, Armin
Civil Engineering Journal Vol 4, No 4 (2018): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (773.297 KB) | DOI: 10.28991/cej-0309125

Abstract

The purpose of this research is to know the effectiveness of fly ash waste in marine concrete related to the average compressive strength to be used as a substitute for cement. The test is done for concrete base material, namely: coarse aggregate (gravel), fine aggregate (sand), fly ash, cement (PC = Portland Cement), water and additional material (superplasticizer). 10 cylinders were given each treatment with (0 %, 10 %, 20 %, 25 %) percentage of fly ash addition. The samples then soaked for 26 days in seawater. At 28th day, the sample was subjected to a compression test. Based on the results of analysis and discussion, then obtained: (1) The use of 10% fly ash amount will produce the biggest compressive strength  =  65.84 MPa; (2) When compared with the average compressive strength, the sample without using fly ash (0 %) has compressive power 62.02 MPa and 6.16 % increase in average compressive strength on the addition of 10 % fly ash 65.84 MPa, but in addition to 20 % fly ash there was a decrease of 9.13 % (56.36 MPa) and in addition of 25 % fly ash the average compressive strength decrease to 22.49 % (48.07 MPa).
A Photogrammetric Method for Spatial Data Extraction from Google Earth and Improvement with Precision Analysis Karimi, Sadegh; Khorrambakht, Ehsan
Civil Engineering Journal Vol 4, No 4 (2018): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1367.284 KB) | DOI: 10.28991/cej-0309141

Abstract

Topography maps are crucial for civil engineering projects, such as road construction, water channel construction, urban construction, and mining. Here we present a method which enables us to extract topographical map via modeling Google Earth and some field works. In this method, first, we model Google Earth as an object with closed-range photogrammetric method in the Agisoft Photoscan. Through some field works, we measured twenty-two points including twelve ground control points (GCP) and ten independent check points (ICP). Due to these GCPs, we were able to transform our model to real world with global polynomial and multi-quadratic equations and ICPs were used for precision analysis. This method is easy and cheap to obtain spatial data and the accuracy is sufficient for research requirements.
An Equivalent Truss Model for In-Plane Nonlinear Analysis of Unreinforced Masonry Walls Mohammadamir Najafgholipour
Civil Engineering Journal Vol 4, No 4 (2018): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (734.787 KB) | DOI: 10.28991/cej-0309136

Abstract

According to the importance of seismic evaluation of existing unreinforced masonry (URM) buildings, researchers have been interested in numerical modelling of these types of structures and their components. On the other hand, in seismic performance evaluation and retrofitting codes which are mostly based on Performance Based Seismic Design (PBSD), different analysis methods such as linear and nonlinear, static and dynamic analyses are employed. Therefore, simple equivalent frame models with lower computational cost are very useful for modelling and analysis of unreinforced masonry buildings. In this article, a simple equivalent truss model is proposed for modelling and analysis of an unreinforced masonry wall with sliding shear failure as the governing in-plane failure mode. The model is developed according to an analogy between the internal forces in a triangular truss and the Mohr-Coulomb failure criteria. Then, the proposed model is generalized for modelling and push over analysis of combinations of walls. Finally, the modelling procedure is applied for push over analysis of an unreinforced masonry wall consists of some piers and the push over curve of the wall is determined and discussed.
Laser Drilling of Small Holes in Different Kinds of Concrete Nagai, Kaori; Beckemper, Stefan; Poprawe, Reinhart
Civil Engineering Journal Vol 4, No 4 (2018): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (646.492 KB) | DOI: 10.28991/cej-0309131

Abstract

Recently, in Japan, safety measures such as earthquake-resistant reinforcement work and tile-reinforcement work are increasing. Current concrete drilling methods have issues such as noise, vibration, dust, and reaction force. These methods are causing stress for the residents. Consequently, solutions are being sought for work taking place on skyscrapers and at facilities that cannot shut down during construction, such as hotels, schools, hospitals and geriatric facilities for instance.   This study investigated how laser drilling change the conditions, depending on the type of concrete in order to determine the possibility of using laser drilling for tile-reinforcement work and repairing concrete on building exterior. The results confirmed that it’s possible to successfully drill holes for drilling diameters of 4 to 6 mm and depths of around 50 mm in concrete with a compressive strength within the range of 20 to 100 N/mm2 by adjusting laser conditions. In case of deep holes the CW-mode should be chosen. Furthermore, by controlling laser irradiation conditions, it is possible to change the shape of the holes. These different kinds of holes are suitable for different applications. It is expected that laser irradiation drilling will be applied to new construction methods.
Deformations of R.C.Circular Slabs in Fire Condition Kassem, Abdelraouf Tawfik
Civil Engineering Journal Vol 4, No 4 (2018): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (934.756 KB) | DOI: 10.28991/cej-0309126

Abstract

Reinforced concrete slabs are elements in direct contact with superimposed loads, having high surface area and small thickness. Such a condition makes slabs highly vulnerable to fire conditions. Fire results in exaggerated deformations in reinforced concrete slabs, as a result of material deterioration and thermal induced stresses. The main objective of this paper is to deeply investigate how circular R.C. slabs, of different configurations, behave in fire condition. That objective has been achieved through finite element modelling. Thermal-structural finite element models have been prepared, using "Ansys". Finite element models used solid elements to model both thermal and structural slab behaviour. Structural loads had been applied, representing slab operational loads, then thermal loads were applied in accordance with ISO 843 fire curve. Outputs in the form of deflection profile and edge rotation have been extracted out of the models to present slab deformations. A parametric study has been conducted to figure out the significance of various parameters such as; slab depth, slenderness ratio, load ratio, and opening size; regarding slab deformations. It was found that deformational behaviour differs significantly for slabs of thickness equal or below 100 mm, than slabs of thickness equal or above 200 mm. On the other hand considerable changes in slabs behaviour take place after 30 minutes of fire exposure for slabs of thickness equals or below 100 mm, while such changes delay till 60 minutes for slabs of thickness equals or above 200 mm.
Analysis of Design Indicators of Sustainable Buildings with an Emphasis on Efficiency of Energy Consumption (Energy Efficiency) Damirchi Loo, Leila; Mahdavinejad, Mohammadjavad
Civil Engineering Journal Vol 4, No 4 (2018): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1327.653 KB) | DOI: 10.28991/cej-0309142

Abstract

Nowadays paying attention to sustainable development issues has been a priority for different countries, due to technological advances and increasing number of problems caused by neglecting the environment. Sustainable development is a new field that considers all the aspects of human life. One of important issues in this area is, considering the energy and efficient energy consumption and reducing the environmental consequences of its consumption. Sustainable design of buildings is also an example of sustainable development. The purpose of this study that has been conducted based on documents and library studies and analysis of samples that are built with the sustainable approach is to study and compare the fundamentals of investigated samples with the criteria of sustainable development. The result is that fundamentals of these buildings as architectural responses can help architectures challenges in different environmental conditions.
Effects of Coarse Aggregate Size on the Compressive Strength of Concrete Ogundipe, Olumide Moses; Olanike, Akinkurolere Olufunke; Nnochiri, Emeka Segun; Ale, Patrick Olu
Civil Engineering Journal Vol 4, No 4 (2018): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (626.019 KB) | DOI: 10.28991/cej-0309137

Abstract

This study investigates the effect of aggregate size on the compressive strength of concrete. Two nominal mixes, that is, 1:2:4 and 1:3:6 were used in the study. Concrete cubes were produced with 6, 10, 12.5, 20 and 25 mm aggregates for the two nominal mixes and they were subjected to compressive strength test after curing for 7, 21, 28 and 56 days. It was found in the study that the strength development follows the same trend for both nominal mixes. Also, the results show that the compressive strength increases with increasing aggregate size up to 12.5 mm, while the concrete produced using 20 mm had greater compressive strength than those produced using 25 mm aggregate. This established the importance of ensuring that the right aggregate size is used in the production of concrete. Therefore, it is recommended that careful attention must be paid to the sizes of aggregates used in the production of concrete for structural purposes.
Compressive Strength by Incorporating Quarry Dust in Self-Compacting Concrete Grade M35 Mushtaq Ahmad; Sana Ullah; Aneel Manan; Temple Chimuanya Odimegwu; Salmia Beddu
Civil Engineering Journal Vol 4, No 4 (2018): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (512.266 KB) | DOI: 10.28991/cej-0309132

Abstract

The study has conducted to determine the workability and compressive strength of the self –compacting concrete. The sand has replaced with quarry dust with the proportion of 10, 20, 30 and 40% and super plasticizer was added 0.9%. The experiments were carried out at the Infrastructure University Kuala Lumpur (IUKL) concrete laboratory. Slump flow, J- Ring tests were carried out to determine the workability of self-compacting concrete and compressive strength test was conducted on 7 days and 28th days of curing period. A finding of the study shows that workability and compressive strength has increased by addition of quarry dust. It is concluded that addition of quarry dust up to 30%  improve the workability of the self-compacting concrete and further addition of quarry dust decrease the workability. Additionally, compressive strength of the quarry dust modified self-compacting concrete shows the trend of higher compressive strength up to 30% addition of quarry dust with sand replacement and further addition decrease the compressive strength.
Experimental Investigation of Compressive Strength and Infiltration Rate of Pervious Concrete by Fully Reduction of Sand Aneel Manan; Mushtaq Ahmad; Fawad Ahmad; Abdul Basit; Muhammad Nasir Ayaz Khan
Civil Engineering Journal Vol 4, No 4 (2018): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (692.806 KB) | DOI: 10.28991/cej-0309127

Abstract

The aim of the study is to investigate compressive strength of pervious concrete by reduction of fine aggregate from zero to 100%, additionally investigate infiltration rate of pervious concrete. Experimental study has conducted at Cecos Engineering University Peshawar. The pervious concrete samples were produced for 7 and 28 days. Compressive strength of pervious concrete indicated higher reduction of the sand reduces compressive strength and almost 50% compressive strength decreased by reduction of 100% sand from the design mix. On the other side, infiltration rate for 28 days shows direct relation above 40% reduction of sand and highest 273% of infiltration rate by reducing 100% sand from the design mix. The 90% reduction of sand from concrete give considerable compressive strength of 2150 psi and infiltration rate of 165.79 inch/hour, which can be recommended for pavements of parking and walking area.
Experimental Assessment of Porous Material Anisotropy and its Effect on Gas Permeability Grzegorz Wałowski
Civil Engineering Journal Vol 4, No 4 (2018): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1064.033 KB) | DOI: 10.28991/cej-0309143

Abstract

The results of experimental research upon the assessment of porous material anisotropy and its effect on gas permeability of porous materials with respect to the gas flow. The conducted research applied to natural materials with an anisotropic gap-porous structure and - for comparative purposes - to model materials such as coke, pumice and polyamide agglomerates. The research was conducted with the use of a special test stand that enables measuring the gas permeability with respect to three flow orientations compared with symmetric cubic-shaped samples. The research results show an explicit impact of the flow direction on the permeability of materials porous, which results from their anisotropic internal structures. The anisotropy coefficient and permeability effective coefficient of such materials was determined and an experimental evaluation of the value of this coefficient was conducted with respect to the gas stream and the total pressure drop across the porous deposit. The process of gas permeability was considered in the category of hydrodynamics of gas flow through porous deposits. It is important to broaden the knowledge of gas hydrodynamics assessment in porous media so far unrecognised for the development of a new generation of clean energy sources, especially in the context of biogas or raw gas production.

Page 1 of 2 | Total Record : 19


Filter by Year

2018 2018


Filter By Issues
All Issue Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue