cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 12 Documents
Search results for , issue "Vol 6, No 5 (2020): May" : 12 Documents clear
Improving the Aging Resistance of Asphalt by Addition of Polyethylene and Sulphur Maria Iqbal; Arshad Hussain; Afaq Khattak; Kamran Ahmad
Civil Engineering Journal Vol 6, No 5 (2020): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091525

Abstract

With the increase in demand of flexible pavements, due to their various advantages over rigid pavements, there is a need to improve the aging properties of the bitumen in order to enhance its resistance against different types of distresses such as rutting, fatigue cracking. This research focus on the use of one polymeric additive Polyethylene (PE) and one non polymeric additive Sulphur (S) to enhance the aging resistance of asphalt. These modifiers are evaluated for their effect on the aging mechanism in comparison with the unmodified bitumen. Aging of the original and modified bitumen is realized by the Rolling Thin Film Oven (RTFO) and Pressure Aging Vessel (PAV). Physical properties of the aged and unaged asphalt binders are evaluated through empirical testing like penetration, ductility and softening point test. Optimum content of the modifiers is obtained by comparing the results of conventional properties before and after aging. Fourier Transformed Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM) are performed to bring out the chemical and morphological changes in the modified binder. Rheological properties of modified asphalt are evaluated with the help of a Dynamic Shear Rheometer (DSR). Results indicate improvement in physical properties of the modified asphalt even after the aging. Penetration index increased which shows less temperature susceptibility of the modified binders. Carbonyl and sulfoxide index are used as aging indicators which shows reduction in case of modified samples. Decrease in the sulfoxide and carbonyl index indicates better oxidation resistance of the modified samples. Morphological analysis proves good compatibility of the modifiers with asphalt binders. DSR results indicate improved viscoelastic properties of the modified binders. Hence it can be concluded that Polyethylene and Sulphur are good options to improve the aging resistance of asphalt in terms of their cost effectiveness and environment friendly nature.
Smart City and Modelling of Its Unorganized Flows Using Cell Machines Truong Thanh Trung
Civil Engineering Journal Vol 6, No 5 (2020): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091520

Abstract

The evolution of the digital economy requires the appropriate infrastructure for administrative management and support of “Smart City". All this makes it possible to look at the problems of the city in a new way. SMART-city is an integrated infrastructure, an environment for improving the comfortable life and work of all citizens. In urban traffic flows, there are obstacles in place where traffic flow is not organized. In these places, special solutions, management measures and safety criteria are required. Such flows and situations should be simulated. This problem is solved based on flow-intensive management criteria using situational scenarios. The efficiency of flow management on busy highways requires the consideration of critical factors. In the present work, such a task is investigated using cell machines, which showed efficiency in streaming tasks of gas dynamics. A purpose of work and its result is a decline system's complexity and dimension by means of linearization and reduction of algorithmic complexity. The field of cells is considered. If there’s an obstacle in the cell then the direction by which the obstacle affects minimally is selected (Stochastic assessment has been used). System analysis of SMART-city problems is also carried out in this work. Adaptive IT infrastructure, security, virtualization, risk and the multi-criteria decision-making in an uncertain environment has been analyzed.
Free Vibration of Tall Buildings using Energy Method and Hamilton’s Principle Peyman Rahgozar
Civil Engineering Journal Vol 6, No 5 (2020): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091519

Abstract

In a framed-tube tall building, shear wall systems are the most efficient structural systems for increasing the lateral load resistance. A novel and simple mathematical model is developed herein which calculates the natural frequencies of such tall buildings. The analyses are based on a continuous model, in which a tall building structure is replaced by an idealized cantilever beam that embodies all relevant structural characteristics. Governing equations and the corresponding eigen-problem are derived based on the energy method and Hamilton’s principle. Solutions are obtained for three examples; using the separation of variables technique implemented in MATLAB. The results are compared to SAP2000 full model analysis; and they indicate reasonable accuracy. The computed natural frequencies for structures 50, 60 and 70 storey buildings were over-estimate 7, 11 and 14 percent respectively. The computed errors indicate that the proposed method has acceptable accuracy; and can be used during the initial stages of designing of tall buildings; it is fast and low cost computational process.
The Effects of Nano Bentonite and Fatty Arbocel on Improving the Behavior of Warm Mixture Asphalt against Moisture Damage and Rutting Sepehr Saedi; Seref Oruc
Civil Engineering Journal Vol 6, No 5 (2020): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091514

Abstract

The use of warm mix asphalt (WMA) technology has increased dramatically in recent years to protect the environment and reduce energy consumption. Despite numerous advantages, WMAs are less commonly used as a result of their lower performance in comparison to HMAs. One of the main reasons for the low performance of WMAs is their high moisture sensitivity. In recent decades, bitumen modifiers have been used to improve the performance of asphalt mixtures. One of the additives that has recently been used to modify the characteristics of bitumen, is bentonite. The grade of asphalt cement used in this study is PG 64 -22 and the Bitumen is modified with 1, 3, 5 and 7% nano bentonite. Also, 0.3% fatty Arbocel has been used for the preparation of WMA. Indirect tensile strength (ITS) test and Nicholson stripping test are used to determine moisture sensitivity and dynamic creep test and LCPC are also used to evaluate the rutting potential. The results indicate that, increasing the percentage of nano bentonite and applying 0.3% of fatty Arbocel improves the resistance of mixture against moisture damage. Also it was found that increasing the mixture hardness decreases the permanent displacement and rutting potential of WMAs. So, it is suggested that the consumption of these additives increases WMA’s lifetime and decreases its maintenance cost.
THE EFFECTS OF DIFFERENT SHAPED BAFFLE BLOCKS ON THE ENERGY DISSIPATION Al-Mansori, Nassrin Jassim Hussien; Alfatlawi, Thair Jabbar Mizhir; Hashim, Khalid S.; Al-Zubaidi, Laith S.
Civil Engineering Journal Vol 6, No 5 (2020): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091521

Abstract

Stilling basins can be defined as energy dissipaters constructed of the irrigation systems. This study aims at investigating the performance of the new seven baffle blocks design in terms of reducing the dimensions of stilling basins in irrigation systems. In order to assess the hydraulic efficiency of a new model for baffle block used in stilling basins, a Naval Research Laboratory (NRL) has conducted. The results of this study demonstrate that the performance of the new baffle block, in term of hydraulic jump length reduction and hydraulic energy dissipation, it's better than standard blocks. However, the ratios of the drag resistance attributed to the new baffles block (FB / F2) have been larger than that applied on the normal block. It was found that the new block dissipates the energy by 9.31% more than the concrete block, and decreases the length of the hydraulic jump by 38.6% in comparison with the standard blocks. However, the new block maximizes the drag force ratio by 98.6% in comparison with the standard baffle blocks. The findings indicated that in terms of energy reduction and dissipation in the length of the hydraulic jump, the new block is superior to the other kinds.
Optimalization of the Ferronickel Production Process through Improving Desulfurization Effectiveness Izet Ibrahimi; Nurten Deva; Sabri Mehmeti
Civil Engineering Journal Vol 6, No 5 (2020): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091516

Abstract

Desulphurization of Ferronickel in the converters with oxygen is the most complex part of the technological process in the Drenas foundry. Sulphur in the ferronickel melting is mostly in the form of FeS, with a melting temperature of 1195oC, and it has tendency to dissolve indefinitely in liquid iron. Our objective is to determine the sulphur removal coefficient, as a key indicator of the desulphurization efficiency in the converter, by measuring the activity and concentration of sulphur and other elements in liquid Fe and melting. Determination of this coefficient is done according to the analytical method, while comparing the current process parameters with those of the new desulfurization methods, other indicators of the refining process are determined. The refining process and the effective conduct of the study depend on the XRD analysis database of metal and slag, and as well of the technological refining process analysis data. Research has shown that desulfurization efficiency is a function of the sulphur removal coefficient, respectively; metal composition, slag, oxygen activity, CaO/SiO2 ratio, sulphide capacity, fluidity, surface pressure, etc.). In addition to this coefficient, other indicators of refining process optimization are defined.
POST-FIRE BEHAVIOR OF POST-TENSIONED SEGMENTAL CONCRETE BEAMS UNDER MONOTONIC STATIC LOADING Oukaili, Nazar; Izzet, Amer F.; Hekmet, Haider M.
Civil Engineering Journal Vol 6, No 5 (2020): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091515

Abstract

This paper presents a study to investigate the behavior of post-tensioned segmental concrete beams that exposed to high-temperature. The experimental program included fabricating and testing twelve simply supported beams that divided into three groups depending on the number of precasting concrete segments. All specimens were prepared with an identical length of 3150 mm and differed in the number of the incorporated segments of the beam (9, 7, or 5 segments). To simulate the genuine fire disasters, nine out of twelve beams were exposed to a high-temperature flame for one hour. Based on the standard fire curve (ASTM ? E119), the temperatures of 300?C (572?F), 500?C (932?F), and 700?C (1292?F) were adopted. Consequently, the beams that exposed to be cool gradually under the ambient laboratory condition, after that, the beams were loaded till failure to investigate the influence of the heating temperature on the performance during the serviceability and the failure stage. It was observed that, as the temperature increased in the internal layers of concrete, the camber of tested beams increased significantly and attained its peak value at the end of the time interval of the stabilization of the heating temperature. This can be attributed to the extra time that was consumed for the heat energy to migrate across the cross-section and to travel along the span of the beam and deteriorate the texture of the concrete causing microcracking with a larger surface area. Experimental findings showed that the load-carrying capacity of the test specimen, with the same number of incorporated concrete segments, was significantly decreased as the heating temperature increased during the fire event.
Mechanical Properties of Cement Mortar after Dry–Wet Cycles and High Temperature Liang-Xiao, Xiong; Xiao-Gang, Song
Civil Engineering Journal Vol 6, No 5 (2020): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091526

Abstract

The dry–wet cycle and high temperature exposure are important factors affecting the normal use and durability of concrete structures. The objective of this work is to investigate the mechanical properties of cement mortar specimens after combinations of dry–wet cycles and high temperature exposures, uniaxial compressive tests on cement mortar specimens were carried out under the following two sets of conditions: (1) high temperature treatment followed by a dry–wet cycle and (2) a dry–wet cycle followed by high temperature treatment. The results show that the compressive strength of specimens increases with the number of dry–wet cycles. After a dry–wet cycle and then a high temperature treatment procedure, the compressive strength of a specimen will first decrease and then increase with the number of dry–wet cycles. The strain at the peak stress of cement mortar decreases as the number of dry–wet cycles increases. At present, there are few research results about the mechanical properties of concrete first after combinations of dry–wet cycles and high temperature exposures. The work in this paper can enrich the results in this area.
Ranking and Determining the Factors Affecting the Road Freight Accidents Model Masoud Bagheri Ramiani; Gholamreza Shirazian
Civil Engineering Journal Vol 6, No 5 (2020): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091518

Abstract

The tremendous growth of population, particularly in developing countries, has led to increased number of travels, especially those with load and freight specifications. Hence, expanding the present facilities or developing new networks or systems concerning freight and transportation is an essential issue. Among the various transportation systems, road freight has secured a significant place in sub-urban transportation, as it is responsible for transporting loads, decreasing transportation costs, and increasing the safety of highway users. Besides these advantages, poor and nonstandard design and performance of sub-urban highways and transport fleet and equipment leads to the increased number of accidents and inefficiency of these facilities.  Based on these facts, the primary aim of the present study is to probe into the factors affecting road freight accident severity. For this purpose, the data obtained from road freight accidents occurring in 2016, 2017, and 2018 in Gilan Province, Iran, were used for analyzing the frequency, ranking and determining the factors, and creating models for accident severity. The results indicated that in accordance with the accident severity model in 2016, several factors such as the season of autumn, daytime light, drivers aged from 18 to 60, and pickup trucks have impacted the on-road freight accident severity. While, in 2017 the severity was affected by factors like rural road, freight trucks, non-faulty passenger cars, motorcycles, and pedestrians. When considering the effective variables in 2018, it was  found that such factors as the accident time (usually occurring between 12 p.m. to 6 p.m)., rural and major roads, freight trucks, non-faulty motorcycles, and the careless driving without due care and attention to the front were the variables affecting road freight accidents. Moreover, not following safety guidelines during freighting is the most effective variable in road freight accidents.
Numerical Investigation of Stress Block for High Strength Concrete Columns Nizar Assi; Husain Al-Gahtani; Mohammed A. Al-Osta
Civil Engineering Journal Vol 6, No 5 (2020): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091522

Abstract

This paper is intended to investigate the stress block for high strength concrete (HSC) using the finite element model (FEM) and analytical approach. New stress block parameters were proposed for HSC including the stress intensity factor (α1) and the depth factor (β1) based on basic equilibrium equations. A (3D) finite element modeling was developed for the columns made of HSC using the comprehensive code ABAQUS. The proposed stress parameters were validated against the experimental data found in the literature and FEM. Thereafter, the proposed stress block for HSC was used to generate interaction diagrams of rectangular and circular columns subjected to compression and uniaxial bending. The effects of the stress block parameters of HSC on the interaction diagrams were demonstrated. The results showed that a good agreement is obtained between the failure loads using the finite element model and the analytical approach using the proposed parameters, as well as the achievement of a close agreement with experimental observation. It is concluded that the use of proposed parameters resulted in a more conservative estimation of the failure load of columns. The effect of the stress depth factor is considered to be minor compared with the effect of the intensity factor.

Page 1 of 2 | Total Record : 12


Filter by Year

2020 2020


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue