cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 15 Documents
Search results for , issue "Vol 7, No 2 (2021): February" : 15 Documents clear
Shear Strength Models for Steel Fibre Reinforced Concrete Beams: Current Scenario Singh, Ranjodh; Singh, Harvinder
Civil Engineering Journal Vol 7, No 2 (2021): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091661

Abstract

This review paper presents a comprehensive comparative analysis of various studies conducted on the shear strength of Self-compacting Concrete (SCC) and Normally Vibrated Concrete (NVC) in order to determine the sustainability and affordability of SCC as a construction material. Compaction is the main factor in concrete production. NVC needs compaction and vibration to remove the entrapped air which is both expensive and time-consuming. But SCC has flow ability and passing ability. Although SCC takes a greater amount of paste content, thereby raising the cost of building material, yet the use of such waste material as fly ash, silica, etc. comes in handy as paste content. Thus, the advantages offered by SCC in terms of increased strength as well as cost reduction makes it a highly desirable construction material. The review has selected the works of some eminent scholars on concrete and has analyzed them through individual as well as comparative perspective. A close analysis has helped filter out relevant works for the current study. This process of selection has proved helpful to include most standard works available in the review. Major findings have been enlisted at the end and ways to improve concrete behaviour have been suggested. Doi: 10.28991/cej-2021-03091661 Full Text: PDF
Effect of Silica Powder on the Bond between Building Stones and Pumice Concrete Rjoub, Muhammad I. M.
Civil Engineering Journal Vol 7, No 2 (2021): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091656

Abstract

The Concrete Backed Stone (CBS) masonry structures are common in many countries in the Middle East. The weak bond and heavyweight are two main problems facing such masonry structures. In this research, Pumice Lightweight Aggregate Concrete (PLWAC) containing silica powder addition is used in backing building stones. The main objective of this research is to investigate the effect of using silica powder addition on the bond strength between building stones and the PLWAC. An experimental program is conducted to investigate the bond strength by applying a direct shear load to the concrete-stone interface. The study investigated the effect of some parameters such as the silica content, the stone surface roughness, and the concrete strength on the bond between lightweight concrete and building stones. The stone roughness comprised specimens of saw-cut and grooved stones with different groove depths. Tests showed that the bond and the compressive strength of the PLWAC increased by increasing the silica content up to 15 percent, where they start to decline. The increase in bond strength corresponding to 10 and 15 percent silica content was 14 and 33 percent, respectively. Increasing the stone roughness by about 50 percent of the saw-cut surface area provided a full bond between the building stones and their backing concrete. Furthermore, the study offered a formula that estimates the bond strength and agrees well with test results. Doi: 10.28991/cej-2021-03091656 Full Text: PDF
Urban Air Quality Guidance Based on Measures Categorization in Road Transport Beti Angelevska; Vaska Atanasova; Igor Andreevski
Civil Engineering Journal Vol 7, No 2 (2021): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091651

Abstract

Air pollution is a cause for serious concerns in urban areas in Republic of North Macedonia. Intensive development of road transport increases the main air pollutants’ concentrations - particulate matter and nitrogen dioxide, whose monitored values are continuously exceeding the limit. The main disadvantage of the national plans and annual reports is the absence of comprehensive and categorized list of reduction/mitigation measures for road transport impacts on air quality. Analyzing the current air pollution problem and road transport contribution this paper provides the needed and detailed categorization of short-to-long term reduction/mitigation measures consisting of five subcategories. Based on measure categorization, a guiding frame for urban air quality is designed, intended for further support and assistance for local authorities in the process of air pollution control. Designed with integrated activities, the air quality guidance enables them to select suitable measures to manage road transport pollution and to evaluate their effects estimating the changes in air pollution levels. Hence, the guidance can be used for thorough planning of air quality issues caused by road transport and for policy making. Contributing for urban air quality improvement the guidance is a first step towards the implementation of air pollution management in urban areas. Doi: 10.28991/cej-2021-03091651 Full Text: PDF
Evaluation of the Architectural Features and Physical Environment in Early Childhood Education Framework Shirin Izadpanah; Poupak Parvaresh; Yaren Şekerci
Civil Engineering Journal Vol 7, No 2 (2021): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091657

Abstract

Many initial childhood settings worldwide have started to create an environment and educational system that would increase the children’s environmental awareness and the ways to minimize it. A newly built ecological kindergarten in Antalya, Turkey, has adopted an educational system in which children are getting involved with nature in most of their daily routines. This study intended to learn if the physical environment of the declared setting responds to the early childhood environmental education work frame. Accordingly, the study has adopted “Guidelines for Excellence, Early Childhood Environmental Education Programs’’ as the primary resource for an evaluation checklist. Data collection is conducted via an in-depth site analysis, as well as the questionnaire survey of teachers and parents regarding their perception of the kindergarten’s physical environment. The results showed that the physical environment of the kindergarten does not meet the requirements of the early education environmental framework. This study underlines the importance of profound research studies that analyze the architectural features of an early environmental education setting and the ways improving its physical attributes may promote the children environmental education. Doi: 10.28991/cej-2021-03091657 Full Text: PDF
Characteristics of Asphalt Mixed Using Mountain Stone Eswan Eswan; Sakti A. Adisasmita; M. Isran Ramli; Syafruddin Rauf
Civil Engineering Journal Vol 7, No 2 (2021): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091652

Abstract

Aggregate is the main thing in asphalt mixtures with a percentage of about 70% to 80%. The aggregate used should meet the Indonesian National Standard (SNI) before being used in the asphalt mixture. East Kalimantan Province is one of the provinces in Indonesia which always brings in aggregates from outside the region for road construction. This study aims to analyze the modulus of stiffness of the AC-WC mixture using local aggregate of East Kalimantan Province and petroleum bitumen grade 60/70 as a binder due to water immersion. This research is experimental in the laboratory. The variation of the petroleum bitumen content used was 4.5, 5.0, 5.5, 6.0 and 6.5%. Water immersion was carried out at the age of 3, 5 and 7 days. The results showed that at 3 days of immersion, the resilient modulus values obtained at petroleum bitumen content of 4.5, 5.0, 5.5, 6.0 and 6.5% were 421.0, 506.0, 872.5, 747.0 and 648.5 MPa, respectively. At 5 days immersion, the resilient modulus values obtained were 383.5, 386.0, 915.5, 561.0 and 555.5 MPa, respectively. Whereas for the 7 days immersion, the resilient modulus were 290.5, 425.5, 1369.0, 547.5 and 525.0 MPa, respectively. It can be seen that water immersion greatly affects the stiffness modulus of the asphalt mixture. This stiffness will cause the asphalt mixture to be easily damaged or cracked. This can be caused by the influence of the sub-standard aggregates used, namely Senoni stone and Mahakam sand. Doi: 10.28991/cej-2021-03091652 Full Text: PDF
Index-based Approach to Evaluate City Resilience in Flooding Scenarios Barreiro, João; Lopes, Ruth; Ferreira, Filipa; Matos, José Saldanha
Civil Engineering Journal Vol 7, No 2 (2021): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091647

Abstract

Intense rainfall events combined with high tide levels frequently result in urban floods in riverine or coastal cities. Their increasing variability and uncertainty demand urgent but sustained responses. Thus, resilience-driven approaches are emerging in contrast to the traditional technical-economic frameworks, as urban resilience reflects the overall capacity of a city to survive, adapt and thrive when experiencing stresses and shocks. This paper presents a simplified index-based methodology for the evaluation and quantification of urban resilience to flooding, based on the works developed in the EU H2020 RESCCUE project. A set of five indicators are proposed to compute the Integrated Urban Resilience Index (IURI), allowing to classify resilience according to a proposed range of rankings. This methodology considers simultaneously a multisectoral approach, reflecting services interdependences, and a sectorial approach, applying 1D/2D computational modelling of the urban drainage network. It was applied to the study case of Lisbon downtown, involving the analysis of interdependencies between 124 infrastructures of 10 urban services. Two scenarios were considered, respecting the current and future situations, considering climate changes. Results enhance the usefulness, practicability, and potential of the proposed approach, and improvement opportunities were also identified for future developments. Doi: 10.28991/cej-2021-03091647 Full Text: PDF
The Impact of the Construction of a Dam on Flood Management Khaddor, Iliasse; Achab, Mohammed; Soumali, Mohamed Rida; Benjbara, Abdelkader; Alaoui, Adil Hafidi
Civil Engineering Journal Vol 7, No 2 (2021): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091658

Abstract

A possible strategy to mitigate the effects of flooding from an area identified as having high runoff potential will reduce the volumes of water that overflow the drainage area and build a system of a storage location in the coastal city of Tangier. The study is based on two main axes: (i) the extreme flow frequency analysis, using eight probability laws adjusted by the Maximum Likelihood method, and (ii) the estimation of the flood outflows at the dam outlet using the routing method in order to assess the effect of detention dams on water flood. Annual (Maximum) series based flood sampling procedure is adopted for constructing the Flood Frequency analysis. A numerical comparison of AIC criteria and BIC has allowed a proceeding to the selection of the most fitted law distributions. The result shows that the Gumbel law is best adapted to the predetermination of the extreme flow estimation in the Mghogha watershed for different return periods. The reservoir routing method along with rainfall-runoff processes were applied by the mean of the HEC-HMS model. The model was run under two different scenarios. Scenario 1 simulates the Mghogha basin with the absence of the reservoir. Meanwhile, scenario 2 simulates the same basin by taking into account the existence of the Ain Mechlawa reservoir within different return periods of from 2 to 200 years. Peak discharges downstream have been dramatically attenuated and water volumes have been decreased with the prolongation of the return period. For the 100 and 200 return periods, the peak discharge of flood reduction for scenario 1 and scenario 2 were 52.06 and 52.17 %, respectively, and for the flood volume was 22.46 and 22.82% respectively. Finally, the results of investigations showed a good performance of the model in the estimation of outflow peak discharge of the Ain Mechlawa Dam. Doi: 10.28991/cej-2021-03091658 Full Text: PDF
Effect of Masonry Infill Walls with Openings on Nonlinear Response of Steel Frames Athmane Rahem; Yahiaoui Djarir; Lahbari Noureddineb; Bouzid Tayeb
Civil Engineering Journal Vol 7, No 2 (2021): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091653

Abstract

The infill walls are usually considered as nonstructural elements and, thus, are not taken into account in analytical models. However, numerous researches have shown that they can significantly affect the seismic response of the structures. The aim of the present study is to examine the role of masonry infill on the damage response of steel frame without and with various types of openings systems subjected to nonlinear static analysis and nonlinear time history analysis. For the purposes of the above investigation, a comprehensive assessment is conducted using twelve typical types of steel frame without masonry, with full masonry and with different heights and widths of openings. The results revealed that the influence of the successive earthquake phenomenon on the structural damage is larger for the infill buildings compared to the bare structures. Furthermore, when buildings with masonry infill are analyzed for seismic sequences, it is of great importance to account for the orientation of the seismic motion. The nonlinear static response indicated that the opening area has an influence on the maximal strength, the ductility and the initial rigidity of these frames. But the shape of the opening will not influence the global behavior. Then, the nonlinear time history analysis indicates that the global displacement is greatly decreased and even the behavior of the curve is affected by the earthquake intensity when opening is considered. Doi: 10.28991/cej-2021-03091653 Full Text: PDF
Evaluating Public Services Delivery on Promoting Inclusive Growth for Inhabitants of Industrial Cities in Developing Countries Saniya Siddiqui; Mohammad Nadeem Akhtar; Jamal K. Nejem; Mastour Saud Alnoumasi
Civil Engineering Journal Vol 7, No 2 (2021): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091648

Abstract

It has been debated that effective essential public services delivery is crucial to inculcate inclusive growth in cities over the past decades. Cities continue to be central to the debate; however, the current study focuses on industrial towns. As industrial towns' development around cities attract investment and promote economic growth, the present research studies the impact of essential public services delivery on promoting inclusive growth for inhabitants of industrial towns in developing countries. Human Capabilities Dimension Approach and its parameters (Social and Physical Infrastructure) have been employed to explore the role of basic amenities in transferring growth levels across all population sections. The idea explored is studied through Mandideep Industrial Town's case study, where six parameters (Physical and socioeconomic status, water supply, sanitation, health care facilities, education facilities), and perceived inclusive growth have been considered for data collection and analysis. Indicators under each parameter are analyzed based on the 4A's-Availability, Accessibility, Awareness, and Affordability. Site selection revolved around a city reconnaissance survey and Household survey for 200 households. Aggregated analysis for the city and ward-wise comparative analysis and statistical correlation tools were used to establish a relationship between basic public services delivery and perceived inclusive growth. The research aims to study and establish a correlation between public service delivery and perceived inclusive growth by the industrial town's inhabitants. Discussions following data analysis led to recommendations for city and ward-level. The importance of efficient service delivery for increased perception of inclusive growth is established. Along with the six parameters considered for the study, physical and environmental planning emerge as crucial parameters that impact other public services for enhanced inclusive growth in industrial cities. Doi: 10.28991/cej-2021-03091648 Full Text: PDF
An Improved CTM Model for Urban Signalized Intersections and Exploration of Traffic Evolution Arlinda A. Rrecaj; Vlera Alimehaj; Marija Malenkovska; Cvetko Mitrovski
Civil Engineering Journal Vol 7, No 2 (2021): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091659

Abstract

In this paper is going to be proposed a Cell Transmission Model (CTM), its analysis and evaluation with a case study, which addresses in a detailed way the aspect of merging and diverging operations on urban arterials. All those few CTM models that have been developed so far, to model intersections, have some limitations and drawbacks. First, unlike the simple composition road networks, such as highways, urban arterials must include some complex parts called merge sand diverges, due to the fact of vibrational values of reduced capacity, reduced saturation flow rate, etc. In order to simulate an urban network/arterial it is not possible to neglect the traffic signal indication on the respective time step. The objective of this paper is to highlight the difference between the results of the original CTM and our proposed CTM and to provide evidence that the later one is better than the old one.  The proposed and formulated model will be employed through an algorithm of CTM to model a segment- arterial road of Pristina (compound from signalized intersections). For the functionalization and testing of the proposed model is build the experimental setup that is compatible with the algorithm created on C# environment. Results show that the proposed model can describe light and congested traffic condition. In light traffic conditions, in great mass traffic flow is dictated by the traffic signal status, while in medium congestion is obtained a rapid increase of the density to each cell. Fluctuations of the density from the lowest to the highest values are obvious during the first three cycles to all cells of the artery in a congested traffic state. Doi: 10.28991/cej-2021-03091659 Full Text: PDF

Page 1 of 2 | Total Record : 15


Filter by Year

2021 2021


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol. 10 No. 11 (2024): November Vol 10, No 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue