cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 12 Documents
Search results for , issue "Vol 7, No 9 (2021): September" : 12 Documents clear
Optimization of the Ultimate Bearing Capacity of Reinforced Soft Soils through the Concept of the Critical Length of Stone Columns Boumekik, Nour El Islam; Labed, Mohamed; Mellas, Mekki; Mabrouki, Abdelhak
Civil Engineering Journal Vol 7, No 9 (2021): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091737

Abstract

The objective of this paper is to develop an analytical equation based on the concept of the critical-length of columns in order to optimize the ultimate bearing-capacity of soft soils, supporting a strip footing and reinforced by a group of floating stone columns. Optimization procedure was performed on three-dimensional numerical models simulated on the Flac3D computer code, for various soft-soils with different undrained-cohesions (Cu=15–35kPa), reinforced by columns of varying lengths (L) and area replacement ratio (As=10-40%), considering different footing widths B. Obtained results indicate that the optimal bearing-capacity ratio (Ultimate bearing-capacity of reinforced soil/unreinforced soil) is reached for the column critical-length ratio (Lc/B) and increase with increase of the later ratio, depending  on As and Cu. Analysis of results also showed that the optimal values of the bearing-capacity ratio in the reinforced soils remain bounded between the lower and higher values (1.28-2.32), respectively for minimal and maximal values of the critical-length ratio (1.1) and (4.4). Based on these results, a useful analytical equation is proposed by the authors, for the expression of the critical-length; thus ensuring an optimal pre-dimensioning of the stone columns. The proposed equation was compared with the data available in the literature and showed good agreement. Doi: 10.28991/cej-2021-03091737 Full Text: PDF
Non-stationary Investigation of Extreme Rainfall Oruc, Sertac
Civil Engineering Journal Vol 7, No 9 (2021): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091748

Abstract

Natural or human-induced variability emerged from investigation of the traditional stationary assumption regarding extreme precipitation analyses. The frequency of extreme rainfall occurrence is expected to increase in the future and neglecting these changes will result in the underestimation of extreme events. However, applications of extremes accept the stationarity that assumes no change over time. Thus, non-stationarity of extreme precipitation of 5, 10, 15, and 30 minutes and 1-, 3-, 6-, and 24-hour data of 17 station in the Black Sea region were investigated in this study. Using one stationary and three non-stationary models for every station and storm duration, 136 stationary and 408 non-stationary models were constructed and compared. The results are presented as non-stationarity impact maps across the Black Sea Region to visualize the results, providing information about the spatial variability and the magnitude of impact as a percentage difference. Results revealed that nonstationary (NST) models outperformed the stationary model for almost all precipitation series at the 17 stations. The model in which time dependent location and scale parameter used (Model 1), performed better among the three different time variant non-stationary models (Model 1 as time variant location and scale parameters, Model 2 as time variant location parameter, and Model 3 as time variant scale parameter). Furthermore, non-stationary impacts exhibited site-specific behavior: Higher magnitudes of non-stationary impacts were observed for the eastern Black Sea region and the coastal line. Moreover, the non-stationary impacts were more explicit for the sub-hourly data, such as 5 minutes or 15 minutes, which can be one of the reasons for severe and frequent flooding events across the region. The results of this study indicate the importance of the selected covariate and the inclusion of it for the reliability of the model development. Spatial and temporal distribution of the nonstationary impacts and their magnitude also urges to further investigation of the impact on precipitation regime, intensification, severity. Doi: 10.28991/cej-2021-03091748 Full Text: PDF

Page 2 of 2 | Total Record : 12


Filter by Year

2021 2021


Filter By Issues
All Issue Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue