cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 18 Documents
Search results for , issue "Vol 8, No 10 (2022): October" : 18 Documents clear
Using CRF Tool for Analyzing the Resilience of Cities S. M. Al-Jawari; N. AbdulRazak Hasach Albasri; O. Jassim Al-Mosherefawi
Civil Engineering Journal Vol 8, No 10 (2022): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-10-013

Abstract

The new sustainable development goals set by the UN include a goal of making cities inclusive, safe, sustainable, and resilient. Cities are growing at huge rates, and conditions of deteriorating QOL̛s are increasing in the form of poor access to services, and slums are remarkable, especially in the cities of the Middle East; hence, the research problem can arise from a lack of knowledge regarding the in determination of a way to assess the resilience of cities to develop mechanisms that will improve the quality of urban life. In this study, a tool called CRF has been applied for the assessment of the city's resilience principles of health and quality of life, economics and social, infrastructure and environmental systems, and the principles of governance and strategic leadership. The research aims to determine the efficiency of Kufa City in achieving the principles of resilience according to the CRF. The research is based on the descriptive analytical method. The research concluded that the city of Kufa achieves low levels of some indicators of resilience, especially on the imposition of security and the rule of law, transportation, and communications, and achieves reasonable rates of resilience regarding opportunities for creating a sustainable economy and achieving basic needs. Doi: 10.28991/CEJ-2022-08-10-013 Full Text: PDF
Study of Lateral Load Influence on Behaviour of Negative Skin Friction on Circular and Square Piles Omar Shawky; Ayman I. Altahrany; Mahmoud Elmeligy
Civil Engineering Journal Vol 8, No 10 (2022): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-10-08

Abstract

Negative skin friction developed on the pile surface causes many problems when piles are built in fully saturated clay. In this work, a study of NSF on a square cross-section pile corresponding to the circular pile circumference was developed. The pile was modeled as a concrete element, embedded and fully contacted with fully saturated soft clay. The clay layer is supported on a sand layer as a sub-base using ABAQUS software, and the NSF was developed on piles due to the consolidation of the clay over a 5-year period. A square pile has been found to provide lower NSF values than a round pile. Then, for the first investigation, both piles were loaded with lateral loads at the top to investigate the effect of the horizontal load on the NSF values, as there is no literature or study done on this point. The results emphasized that lateral loads reduce the NSF developed on piles. A parametric study was performed to investigate the parameters affecting the NSF values induced on piles, such as soil permeability, ballast, and lateral load values. It was concluded that square piles provide better NSF values than round piles for both single piles and pile groups. Doi: 10.28991/CEJ-2022-08-10-08 Full Text: PDF
Experimental and Analytical Study of High-Strength Concrete Containing Natural Zeolite and Additives Iswarya Gowram; Beulah. M
Civil Engineering Journal Vol 8, No 10 (2022): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-10-019

Abstract

The study compares the durability of Natural Zeolite with Metakaolin, Silica Fume, and Fly Ash on high-strength concrete. 300 concrete specimens were tested for compressive strength before and after an acid attack, modulus of elasticity, water absorption, and rapid chloride permeability. 5%, 10%, and 15% of the cement were replaced with cementitious elements while maintaining the same quantity of Natural Zeolite. In this investigation, the water-cement ratio was maintained at 0.35. After 28 days, the specimens were tested for durability. Samples of all mixes were TG/DT and FTIR tested. The optimal percentages of cementitious materials that resulted to the maximum durability enhancements were reported as the study results. Experimental results showed that Natural Zeolite and Metakaolin strengthened the durability of concrete. All the data show that 5% Natural Zeolite with 10% Metakaolin performs well. Good R2values and appropriate independent variable coefficients suggested that the regression findings for high-strength concrete durability were accurate. The P values of all models were less than 0.005 and the F values were statistically significant and appropriate; therefore, the generated models predict concrete's strength with authenticity. Doi: 10.28991/CEJ-2022-08-10-019 Full Text: PDF
Forecasting the Effects of Failure Criteria in Assessing Ship Structural Damage Modes Aditya Rio Prabowo; R. Ridwan; T. Tuswan; Fitrian Imaduddin
Civil Engineering Journal Vol 8, No 10 (2022): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-10-03

Abstract

The failure to achieve satisfactory results will cause immense losses in major projects. Nevertheless, the modeling limitations and phenomenon assumptions represented by failure criteria can significantly influence the final results—e.g., the damage mode, affecting its quantification—thus representing an interesting topic for technical assessment. This work aims to forecast the effects of several failure criteria on the damage occurring due to structural loading schemes, such as compression, torsion, and tensile tests. Failure criteria are taken based on the proposal of pioneer researchers and include those of Peschmann (P), Germanischer Lloyd (GL), Liu (LIU), and Rice–Tracey and Cockroft–Latham (RTCL). A series of nonlinear finite element analyses (NLFEA) are conducted by inputting these criteria into different loading schemes. To obtain reliable validation, the proposed models are designed based on previous laboratory experiments. The numerical results of NLFEA in the forms of damage mode, i.e., tearing, plastic deformation, and torsion, are cross-checked with experimental data. The results show that numerical modeling using the LIU criterion produces slightly larger discrepancies compared with experimental data. This indication is founded on the analysis of stress–strain, load–displacement, and shear stress–strain during the tensile test, compressive load, and torsion load, respectively. According to this work, we formulate recommendations based on the forecast tendency and accuracy for each damage mode subjected to failure criteria. Therefore, future works can adopt the findings in our current work when choosing to apply specific criteria in structural modeling and load idealization. Doi: 10.28991/CEJ-2022-08-10-03 Full Text: PDF
Experimental Measurement and Simulation of Railway Track Irregularities L. Bouhlal; N. Lamdouar; F. Kassou
Civil Engineering Journal Vol 8, No 10 (2022): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-10-014

Abstract

The study of railway dynamics is still a productive area of research given the rapid technological evolution of this transport system regarding load and speed. Morocco is no exception to this rule, especially after the commissioning of the first high-speed line in Africa. This study describes herein an experiment to measure vertical and transverse accelerations in a locomotive on a railroad line connecting the two cities of Mchraa Ben Abbou and Marrakech. The observed accelerations constitute the vehicle's dynamic responses while running at a constant speed on a track with irregularities (also known as track geometry), which is considered the main driving force of train dynamics and the track system. They are used to evaluate passenger comfort and safety. It can also be observed that body accelerations increase with the introduction of track irregularities as compared to a smoother track. In this study, an analysis of these experimental measurements is performed based on boxplot simulations comparing the distributions of the transverse and vertical components of vehicle acceleration. It was found that the medians and first and third quartiles of both distributions are very close. Doi: 10.28991/CEJ-2022-08-10-014 Full Text: PDF
The Implementation of Smart Mobility for Smart Cities: A Case Study in Qatar Shahram Tahmasseby
Civil Engineering Journal Vol 8, No 10 (2022): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-10-09

Abstract

This paper contributes to building a systematic view of the mobility characteristics of smart cities by reviewing the lessons learned from the best practices implemented around the world. The main features of smart cities, such as smart homes, smart infrastructure, smart operations, smart services, smart utilities, smart energy, smart governance, smart lifestyle, smart business, and smart mobility in North America, Asia, and Europe are briefly reviewed. The study predominantly focuses on smart mobility features and their implications in newly built smart cities. As a case study, the modern city of Lusail located in the north of Doha, Qatar is considered. The provision of car park management and guidance, real-time traffic signal control, traffic information system, active-modes arrangement in promenade and busy urban avenues, LRT, buses, taxis, and water taxis information system, and multimodal journey planning facilities in the Lusail smart city is discussed in this study. Consequently, the implications of smart mobility features on adopting Intelligent Transportation Systems (ITS) will be studied. The study demonstrates that the implementation of Information and Communication Technologies (ICT) when supported by Intelligent Transportation Systems (ITS), could result in making the most efficient use of existing transportation infrastructure and consequently improve the safety and security, mobility, and the environment in urban areas. The findings of this study could be considered an initial step in the implementation of Mobility-as-a-Service (MaaS) in cities with advanced public transportation such as Doha, the capital of Qatar. Doi: 10.28991/CEJ-2022-08-10-09 Full Text: PDF
A Highly Sustainable Timber-Cork Modular System for Lightweight Temporary Housing Francesco Barreca; Natale Arcuri; Giuseppe D. Cardinali; Salvatore Di Fazio; Antonino Rollo; Viviana Tirella
Civil Engineering Journal Vol 8, No 10 (2022): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-10-020

Abstract

In recent years, global society has been subjected to great change due to unpredictable events such as pandemics, migrant flow, urban homeless, wars, and natural disasters. There has been an increased demand for fast and easily constructed buildings characterized by limited space and used for a limited time, modular and flexible self-assembly homes that are reusable without compromising comfort and environmental sustainability. A highly sustainable timber-cork modular system for lightweight temporary housing (LTH) is proposed in this paper. The structure of the proposed LTH was designed as a succession of modular timber portal frames composed of spruce boards hinged together. The concept of the prototype was a full modular shelter. It was possible to interchange every piece of the building, the structural elements, and the walls with each other. Due to the modularity of the elements of which the shelter was composed, this system could offer different solutions to the events above. The proposed LTH was analyzed in terms of its structural, thermal, and environmental performance. The structural system is very reminiscent of the platform frame, characterized by a light load-bearing frame consisting of solid timber uprights and crosspieces connected to the internal frame by means of a mechanical connection. The structural FEM analysis highlighted the structure’s capacity to withstand wind with a velocity of 72 m·s-1, corresponding to the F3 of the enhanced Fujita Scale (EF Scale) of tornado damage intensity. The thermal analysis highlighted a yearly energy use of 430.49 kWh to maintain a set-point temperature indoors of 20-26°C compared with a yearly energy use of 625.93 kWh for a common container house (CH) with the same dimensions under the same environmental conditions. Finally, a Life Cycle Analysis comparison between the proposed LTH and the CH was carried out by means of the One Click LCA software. Two different scenarios of service life were considered: one of 10 years and the other of 5 years. The results highlighted the higher sustainability of the proposed LTH than that of the CH for the required service life (Req SL) period. In particular, the calculated greenhouse gas emissions of the LTH (3.52ž103 kgCO2 eq) were less than 1/2 of the gas emissions of the CH (8.53ž103) for a Req SL of 10 years and about 1/3 for a Req SL of 5 years. Furthermore, the LTH showed a value of biogenic carbon storage (7.76E2 kgCO2) about 6 times bigger than the temporary house container (1.31E2 kgCO2). Doi: 10.28991/CEJ-2022-08-10-020 Full Text: PDF
Ultimate Load of Different Types of Reinforced Self-Compacting Concrete Columns Attacked by Sulphate N. Muhammed; L. Shihab; S. Sakin
Civil Engineering Journal Vol 8, No 10 (2022): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-10-04

Abstract

In this study, the effects of the partial immersion of sulphate attack on the ultimate load capacity of reinforced self-compacting concrete (SCC) columns and the sulphate attack resistance improvement using silica fume, steel fibres, and the combination of silica fume and steel fibres were assessed. Twelve short circular self-compacting reinforced concrete columns (0.150 m in diameter and 0.7 m long) were cast and divided into groups according to (1) the three acid-attack groups. The first group was tested without an acid attack (control). The second group was tested after 1 month of exposure to 2% acid. The final group was tested after 1 month of exposure to 4% acid and was then (2) subdivided according to the type of casted concrete. The first group was cast with SCC. The second group was cast with SCC and silica fume (0.1% of the cement weight). The third group was cast with SCC and 1% volume fraction steel fibres. The fourth group was cast with SCC silica fume and 1% volume fraction steel fibre. All columns were tested by axial loading. The ultimate load was increased by 42% with silica fume, 190% with steel fibres, and 238% with silica fume and steel fibres. Exposure to 2% and 4% acid reduced the ultimate loads of the columns casted with SCC by 23% and 47%, the columns casted with SCC and silica fume by 34% and 37%, the columns casted with SCC and steel fibres by 69% and 78%, and the columns casted with SCC, silica fume, and steel fibres by 72% and 79%, respectively. Based on the results, using silica fumes improved sulphate resistance, and using steel fibres enhanced sulphate resistance at an acceptable ratio. Furthermore, the mix with silica fume and steel fibres improved sulphate resistance at a good ratio. We encountered several problems in this study. The partial immersion of sulphate affected the strain in both concrete and steel. Future studies using different immersion ratios are recommended. Doi: 10.28991/CEJ-2022-08-10-04 Full Text: PDF
Maximum Strain Effect and Secant Modulus Variation of Hemic Peat Soil at large Deformation due to Cyclic Loading Habib Musa Mohamad; Adnan Zainorabidin; Mohamad Ibrahim Mohamad
Civil Engineering Journal Vol 8, No 10 (2022): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-10-015

Abstract

This study presents the findings obtained in post-cyclic behaviour and degradation of shear strength from the static triaxial test, cyclic triaxial test and post-cyclic monotonic triaxial test to study the dynamic loading relationships with the degradation of shear strength after cyclic loading to the maximum strain effect due for Hemic peat soil and aim of this research was to assess the post-cyclic loading condition that brought to the understanding of secant modulus by using dynamic triaxial apparatus. It begins with a visual inspection of fibre characteristics. This is followed by an analysis of static, cyclic, and post-cyclic loading with stress-strain behaviour. Shear strength decreased and notched lower strength than its initial strength. As a matter of fact, PNpt-25 kPa from 1, 2, and 3 Hz are accumulated in the adjacent maximum strain. With regards to this maximum strain, the undrained shear strength ratio shows sequent decreases from higher to lower frequency applied. For instance, PNpt-25 kPa-1Hz to PNpt-25 kPa-3Hz recorded 1.16 to 1.13 undrained shear strength ratios, respectively. The secant modulus (Esec) for all specimens reflects decrement. The secant modulus for BSpt at an effective stress of 100 kPa in static monotonic is about 18.74 MPa, while in post-cyclic, the secant modulus expanded to 19.630 MPa cyclically loaded with 1 Hz. Unfortunately, the secant modulus returned to decline position when higher frequency applied at 2 Hz, where the secant modulus is about 12.781 MPa and continues to decline with 3 Hz at 7.492 MPa. Doi: 10.28991/CEJ-2022-08-10-015 Full Text: PDF
Experimental Research on the Effects of Waste Foundry Sand on the Strength and Micro-Structural Properties of Concrete K. Archaneswar Kumar; K. Rajasekhar; C. Sashidhar
Civil Engineering Journal Vol 8, No 10 (2022): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-10-010

Abstract

Now a days, a great distance has to be travelled to find good quality natural river sand. These supplies are also running out very quickly. So, a replacement for river sand is being sought after. Natural river sand is non-renewable and takes millions of years to be produced. By using manufactured sand, natural sand is completely replaced. Lack of research has led to the substitution of leftover waste foundry sand for manufactured sand in concrete. By adding used foundry sand to concrete, it is possible to enhance mechanical properties like compressive strength, fracture toughness, and flexibility. Using tests on cubes, cylinders, and unreinforced beams, the mechanical properties of concrete made with waste foundry sand and manufactured sand as fine aggregate were assessed. Tensile, splitting, and flexural strengths of the concrete were all determined after 7, 14, 28, 56, and 90 days of curing. SEM, EDS, and Thermo Gravimetric Analysis (TGA/DCs) were also used to perform micro structural analyses on the control mixture and mixtures containing 10, 20, 30, 40, and 50% waste foundry sand. The strength differences that occur when fine aggregates are replaced with waste foundry sand in different proportions are better understood, thanks to the micro structural experiments. In order to justify its use as a replacement for fine aggregate in terms of strength and microstructure studies, just the right amount of WFS was added to the concrete. Doi: 10.28991/CEJ-2022-08-10-010 Full Text: PDF

Page 1 of 2 | Total Record : 18


Filter by Year

2022 2022


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue