cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 19 Documents
Search results for , issue "Vol 8, No 11 (2022): November" : 19 Documents clear
Designing Mesh Turbomachinery with the Development of Euler’s Ideas and Investigating Flow Distribution Characteristics Yuri Appolonievich Sazonov; Mikhail A. Mokhov; Inna Vladimirovna Gryaznova; Victoria Vasilievna Voronova; Khoren Arturovich Tumanyan; Mikhail Alexandrovich Frankov; Nikolay Nikolaevich Balaka
Civil Engineering Journal Vol 8, No 11 (2022): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-11-017

Abstract

This research discusses developing an Euler turbine-based hybrid mesh turbomachinery. Within the framework of mechanical engineering science, turbomachinery classification and a novel method for mesh turbomachinery design were considered. In such a turbomachine, large blades are replaced by a set of smaller blades, which are interconnected to form flow channels in a mesh structure. Previous studies (and reasoning within the framework of inductive and deductive logic) showed that the jet mesh control system allows for operation with several flows simultaneously and provides a pulsed flow regime in flow channels. This provides new opportunities for expanding the control range and reducing the thermal load on the turbomachine blades. The novel method for performance evaluation was confirmed by the calculation: the possibility of implementing pulsed cooling of blades periodically washed by a hot working gas flow (at a temperature of 1000°C) and a cold gas flow (at a temperature of 20°C) was shown. The temperature of the blade walls remained 490–525°C. New results of ongoing research are focused on creating multi-mode turbomachinery that operates in complicated conditions, e.g., in offshore gas fields. Gas energy is lost and dissipated in the throttle at the mouth of each high-pressure well. Within the framework of ongoing research, the environmentally friendly net reservoir energy of high-pressure well gas should be rationally used for operating a booster compressor station. Here, the energy consumption from an external power source can be reduced by 50%, according to preliminary estimates. Doi: 10.28991/CEJ-2022-08-11-017 Full Text: PDF
Seismic Analysis of Double Unit Tunnel Form Building Subjected to Out-of-Plane Lateral Cyclic Loading Shamilah Anuar; Afifuddin Azizuddin
Civil Engineering Journal Vol 8, No 11 (2022): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-11-012

Abstract

Most of the high-rise buildings for commercial and residential purposes in Malaysia are constructed using a tunnel formwork system. This type of building becomes a favor due to the fast construction and cost-effectiveness. However, the research on the behavior of Tunnel Form Building (TFB) under the seismic effect is still insufficient and requires further investigation. Therefore, the safety level of double unit TFB subjected to weak plane (out-of-plane) was investigated in this study. The TFB was designed using a non-seismic provision to represent an existing condominium building constructed in Selangor. Ten past earthquake records categorized as major, moderate, and low magnitudes were utilized. The behavior of the double unit TFB was analyzed using the Ruaumoko 2D program. The ultimate lateral load, displacement, pseudo-spectral acceleration (PSA), pseudo-spectral displacement (PSD), and mode shape of TFB were also analyzed. Based on the findings, most of the selected earthquake records exceeded the lateral capacity of TFB. The building experienced a major damage under 6.9 Richter scale of Imperial Valley, 7.3 Richter scale of San Joaquin Valley, and 7.9 Richter scale of Denali Earthquakes excitations. Therefore, these findings suggested if any similar magnitudes of unpredicted seismic events would occur in the future, significant damages may be experienced by the existing TFB in Malaysia. Doi: 10.28991/CEJ-2022-08-11-012 Full Text: PDF
Destructive and Nondestructive Tests for Concrete Containing a Various Types of Fibers Muthana Sh. Mahdi; Ihab S. Saleh; Saddam Kh. Faleh
Civil Engineering Journal Vol 8, No 11 (2022): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-11-07

Abstract

Fibers have been considered an effective material that was used to improve the concrete's weak properties, namely its tensile strength, ductility, and crack resistance. Thus, the current study highlights two major objective, the former is the fibers shapes and types on the mechanical properties of the fresh and hardened concrete while the latter explores the impact of the fiber contents on the concrete mechanical properties developments. To achieve these targets six types of fibers (five of them made of steel and the last was polyolefin fibers) with various shapes are utilized. The tests were carried out to investigate the fibers shape and material contribution in the concrete mix properties improvement. The samples were subjected to destructive and non-destructive tests such as workability, compression, bending, and splitting. The non-destructive tests include ultrasonic pulse velocities and the Schmidt Hammer test. Three kinds of fibers (two of steel and one of polyolefin fiber) are used with variable content ratios of 0.5, 0.75, 1.0, and 1.5% to study the fiber content effect. Generally, the workability of fresh concrete has a reverse relationship with fiber presence and fiber content ratios. The compressive capacity, splitting and flexural strength has a direct proportion with fibers contents. The hooked steel fibers appeared the best results in terms of shape comparison. Doi: 10.28991/CEJ-2022-08-11-07 Full Text: PDF
Modeling Sustainable Traffic Behavior: Avoiding Congestion at a Stationary Bottleneck Imran Badshah; Zawar H. Khan; T. Aaron Gulliver; Khurram S. Khattak; Syed Saad
Civil Engineering Journal Vol 8, No 11 (2022): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-11-02

Abstract

Sustainable traffic behaviour is increasing in importance as traffic volume rises due to population growth. In this paper, a model for traffic flow at a stationary bottleneck is developed to determine the parameters that cause congestion. Towards this goal, traffic density, speed, and delay were acquired during peak and off-peak periods in the morning and afternoon at a stationary bottleneck in Peshawar, KPK, Pakistan. The morning and afternoon peak periods have high densities, low speeds, and considerable delays. Regression models are developed using this data. These results indicate that there is a linear relationship between density and time at the stationary bottleneck and a negative linear relationship between density and speed. Thus, an increase in density increases the time delay and reduces the speed. I comprehensive traffic delay model is characterized by a stationary bottleneck. The Kolmogorov-Smirnov (KS) test and P-values were used to identify the best-fit distribution for speed and density. The binomial and generalized extreme values are considered the best fits for density and speed. The results presented can be used to develop accurate simulation models for stationary bottlenecks to reduce congestion. Doi: 10.28991/CEJ-2022-08-11-02 Full Text: PDF
Multi-Cycle Production Development Planning for Sustainable Power Systems to Maximize the Use of Renewable Energy Sources Wahab Musa; Vadim Ponkratov; Alan Karaev; Nikolay Kuznetsov; Larisa Vatutina; Maria Volkova; Olga Shalina; Andrey Masterov
Civil Engineering Journal Vol 8, No 11 (2022): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-11-018

Abstract

This research focuses on the multi-cycle production development planning for sustainable power systems to maximize the usage of renewable energy sources. The intention of this study is to offer a comprehensive review of the research on the potential of multi-cycle production development planning for the development of sustainable power systems. In pursuit of this objective, the study has incorporated a qualitative research approach to analyze the volume of data available on the research topic to delineate how multi-cycle production development planning can be used for sustainable power systems and the maximization of the use of renewable energy sources. The study also highlights the major models that can be incorporated into the multi-cycle production development planning for sustainable power systems to maximize the use of renewable energy sources. The existing literature was extracted from databases, namely, Google Scholar, EBSCOHost, and Springer. The data comprised peer-reviewed journal articles, books, and credible online sources. Lastly, the practical and theoretical relevance of the study, along with limitations and recommendations for future practitioners, is provided in the conclusion. Doi: 10.28991/CEJ-2022-08-11-018 Full Text: PDF
Discovering an Orphan Source of Ionizing Radiation with Respect to Occupational Safety and Health Miroslav Tomek; Jan Strohmandl; Pavel Tomášek; Dušan Vičar
Civil Engineering Journal Vol 8, No 11 (2022): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-11-013

Abstract

Compliance with the principles of occupational safety and health is one of the preconditions for avoiding emergency events. Without a doubt, this is one of the underlying duties of every employer or operator of waste recycling centers. The risk to health resulting from an orphan source of ionizing radiation in the form of scrap metal is quite high and can affect a significant number of people. As part of the precautions relating to employees, the employer must analyze the risks associated with working with scrap metal and emphasize the possibility of any previous contamination. In practice, various methods and procedures are used to assess the risks at scrap metal collection facilities, which are mostly based on the knowledge and experience of their inspectors. However, this is not usually done by means of appropriate risk analysis methods, which is the main disadvantage. The goal of this article is to point at the risks related to discovering an orphan source of ionizing radiation by using the Ishikawa diagram and the point method. Furthermore, this article also deals with the demarcation of a safety zone with respect to the protection of health and the environment. The specification of risks, the proposal of recommended precautions, and the expeditious demarcation of a safety zone in the case of the intervention of fire brigades in order to protect and/or decontaminate the persons are also included. Doi: 10.28991/CEJ-2022-08-11-013 Full Text: PDF
Meta Synthesis of Community Participation Model on Trans-Papua Road Development Zepnat Kambu; M. Yamin Jinca; M. Saleh Pallu; M. Isran Ramli
Civil Engineering Journal Vol 8, No 11 (2022): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-11-08

Abstract

The Trans Papua road infrastructure is not only for physical growth but also for social and economic improvement (social, cultural, and environmental relations). Trans Papua establishes a new economic development center that will boost the community's income but must also reduce social, cultural, and environmental issues. Increasing community and indigenous Papuan engagement reduces social disputes. Trans-development Papua raises environmental problems in addition to economic benefits. Environmental disputes are avoided by not disturbing Lorentz National Park, which has the most comprehensive biodiversity and environment in Asia and the Pacific. To achieve Indonesia's commitment to the Sustainable Development Goals, the policy model for future consequences must be examined (SDGs). This project intends to build a dispute resolution paradigm and cooperative implementation strategies for Trans Papua road development. It starts with bottom-up perception discussions, alternative possibilities, concept creation, and Trans Papua infrastructure execution plans. This initiative intends to maximize social-community capital to speed the building of functional and efficient infrastructure for the Papuan community. The predicted benefits help the government evaluate prior Trans Papua road construction plans and guide future decision-making to accelerate and reduce road conflicts. Doi: 10.28991/CEJ-2022-08-11-08 Full Text: PDF
Optimal Compressive Strength of RHA Ultra-High-Performance Lightweight Concrete (UHPLC) and Its Environmental Performance Using Life Cycle Assessment Kennedy C. Onyelowe; Ahmed M. Ebid; Hisham A. Mahdi; Ariel Riofrio; Danial Rezazadeh Eidgahee; Haci Baykara; Atefeh Soleymani; Denise-Penelope N. Kontoni; Jamshid Shakeri; Hashem Jahangir
Civil Engineering Journal Vol 8, No 11 (2022): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-11-03

Abstract

Frequent laboratory needs during the production of concrete for infrastructure development purposes are a factor of serious concern for sustainable development. In order to overcome this trend, an intelligent forecast of the concrete properties based on multiple data points collected from various concrete mixes produced and cured under different conditions is adopted. It is equally important to consider the impact of the concrete components in this attempt to take care of the environmental risks involved in this production. In this work, 192 mixes of an ultra-high-performance lightweight concrete (UHPLC) were collected from literature representing different mixes cured under different periods and laboratory conditions. These mix proportions constitute measured variables, which are curing age (A), cement content (C), fine aggregate (FAg), plasticizer (PL), and rice husk ash (RHA). The studied concrete property was the unconfined compressive strength (Fc). This exercise was necessary to reduce multiple dependence on laboratory examinations by proposing concrete strength equations. First, the life cycle assessment evaluation was conducted on the rice husk ash-based UHPLC, and the results from the 192 mixes show that the C-783 mix (87 kg/m3 RHA) has the highest score on the environmental performance evaluation, while C-300 (75 kg/m3 RHA) with life cycle indices of 289.85 kg CO2eq. Global warming potential (GWP), 0.66 kg SO2eq. Terrestrial acidification and 5.77 m3 water consumption was selected to be the optimal choice due to its good profile in the LCA and the Fc associated with the mix. Second, intelligent predictions were conducted by using six algorithms (ANN-BP), (ANN-GRG), (ANN-GA), (GP), (EPR), and (GMDH-Combi). The results show that (ANN-BP) with performance indices of R; 0.989, R2; 0.979, mean square error (MSE); 2252.55, root mean squared error (RMSE); 42.46 MPa and mean absolute percentage error (MAPE); 4.95% outclassed the other five techniques and is selected as the decisive model. However, it also compared well and outclassed previous models, which had used gene expression programming (GEP) and random forest regression (RFR) and achieved R2of 0.96 and 0.91, respectively. Doi: 10.28991/CEJ-2022-08-11-03 Full Text: PDF
Enhanced Torsion Mechanism of Small-Scale Reinforced Concrete Beams with Spiral Transverse Reinforcement Shereen Mahmoud; Ahmed Youssef; Hamed Salem
Civil Engineering Journal Vol 8, No 11 (2022): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-11-019

Abstract

The nonlinear torsional behaviour of small-scale reinforced concrete (RC) beams with continuous staggered spiral as transverse reinforcement stirrups is experimentally investigated. Twelve miniatures RC beams were tested under torsion load considering the closed shape of stirrups and compared with continuous staggered spiral ones. All miniatures beams were scaled down to be one-eighth the prototype beam size. The main parameters considered in this research are stirrup spacing and its configurations. Small scale RC beams were taken into account in the existing study because of their construction simplicity and financial feasibility. Mortar without coarse aggregate was applied instead of concrete to reduce the size effect of applying small scale models. Ongoing research trials have been carried out to obtain an efficacious approach to boost torsion failure mechanisms because brittle torsion failure of RC structural elements should be avoided. This study emphasized boosted torsion capacity, dissipated energy, and helical crack propagation. During testing, the primary cracking torsion moment, ultimate torsion moment, peak twist angle, and failure mechanism of the beams were inspected. The use of spiral stirrups showed great enhancement of the torsional behaviour of samples. It was observed that using spiral stirrups rather than closed stirrups could result in a substantial increase in torsion capacity and dissipated energy of 87.7% and 89.8%, respectively. As a result, the predicted capacities of the RC beams prototype were estimated in detail, taking account the scale down factor implemented by the authors. Values obtained based on international specifications and guidelines were used to compare the experimental results. Doi: 10.28991/CEJ-2022-08-11-019 Full Text: PDF

Page 2 of 2 | Total Record : 19


Filter by Year

2022 2022


Filter By Issues
All Issue Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue