cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 17 Documents
Search results for , issue "Vol 9, No 3 (2023): March" : 17 Documents clear
Punching Capacity of UHPC Post Tensioned Flat Slabs with and Without Shear Reinforcement: An Experimental Study Ahmed Afifi; Mohamed Ramadan; Ahmed M. Farghal Maree; Ahmed M. Ebid; Amr H. Zaher; Dina M. Ors
Civil Engineering Journal Vol 9, No 3 (2023): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-03-06

Abstract

Punching capacity is one of the main items in the design of both pre-stressed and non-pre-stressed flat slabs. All international design codes include provisions to prevent this type of failure. Unfortunately, there is no code provision for UHPC yet, and hence, the aim of this research is to experimentally investigate the impact of column dimensions and punching reinforcement on the punching capacity of post-tensioned slabs and compare the results with the international design codes’ provisions to evaluate its validity. The test program included five slabs with a compressive strength of 120 MPa: one as a control sample, two to study the effect of column size, and the last two to study the effect of punching reinforcement. Comparing the results with the design codes showed that ACI-318 is more accurate with an average deviation of about 5%, while EC2 is more conservative with an average deviation of about 20%. Besides that, punching reinforcement reduces the size of the punching wedge by increasing the crack angle to 28° instead of 22° for slabs without punching reinforcement. Also, the results assure that both ductility and stiffness are enhanced with the increased column dimensions and punching reinforcement ratio. Doi: 10.28991/CEJ-2023-09-03-06 Full Text: PDF
Seasonal Variations in Groundwater Quality under Different Impacts Using Statistical Approaches Giao Thanh Nguyen; Nhien Thi Hong Huynh
Civil Engineering Journal Vol 9, No 3 (2023): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-03-01

Abstract

The objective of this study was to evaluate seasonal fluctuations in groundwater quality, determine the effects of different stressors on this resource, and recognize the potential pollution sources in a coastal region of southern Vietnam. Eleven samples collected in Ben Tre province during the dry and wet seasons were then analyzed for sixteen parameters, including pH, total dissolved solids (TDS), salinity, total hardness (TH), ammonium (NH₄⁺-N), nitrite (NO₂ˉ-N), nitrate (NO₃ˉ-N), sulfate (SO₄²ˉ), chloride (Clˉ), iron (Fe), manganese (Mn), lead (Pb), mercury (Hg), arsenic (As), coliforms, and Escherichia coli (E. coli). Pearson correlation analysis, principal component analysis (PCA), and cluster analysis (CA) were employed. The results indicated that total dissolved solids, salinity, total hardness, Clˉ, E. coli and coliform were detected as contaminants in groundwater samples. The trend of fluctuations in the parameters was mostly higher in the dry season. Which Mn and coliform significantly fluctuated between the dry and wet seasons. Activities in industrial-craft areas, landfills and seawater-intruded areas negatively impacted groundwater quality, typically TDS in industrial-craft areas, coliform and E.coliat the landfill area. Six principal components obtained from PCA could explain 93.6% of the variance, and all parameters are responsible for variations in groundwater quality. Geology, discharged wastewater, landfill leachate, agricultural activities, and saltwater intrusion can be considered representative factors. CA grouped the collected samples into four clusters based on the similarity in water properties. The analysis results showed that the locations in each cluster have outstanding water quality characteristics, clusters I and III have high TDS characteristics, cluster II has coliforms, and cluster IV sets of locations with high salinity. This study is promised to partially fill the gap in comprehensive information on groundwater quality in the coastal province so that policymakers can develop sustainable water management strategies in the future. Doi: 10.28991/CEJ-2023-09-03-01 Full Text: PDF
Finite Element Analysis of Two Nearby Interfering Strip Footings Embedded in Saturated Cohesive Soils Mo'men Ayasrah; Mohammed Y. Fattah
Civil Engineering Journal Vol 9, No 3 (2023): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-03-017

Abstract

The issue of interaction between nearby footings is of paramount practical significance. The interference effect should be taken into account since the footing may really be separated from or bounded by other footings on one or both sides. In this regard, this paper studies the effect of two nearby interfering strip footings embedded in saturated cohesive soils, which will help to provide a better understanding of the impact of footing depth on the interference effect. A numerical study is carried out using the finite element program (Midas GTS-NX), and the behavior of closely placed strip footings embedded in the saturated cohesive soils is investigated under the influence of different factors such as the spacing between footings, the depth of footings, soil undrained shear strength, and the groundwater table. It was concluded that the soil cohesion and the footing depth ratio have a notable influence on the interference of closely spaced footings. For all cohesion values, it has been observed that the spacing needed for interference to vanish decreases with an increase in the depth of the footing and water table. In addition, as the S/B ratio increases, the ultimate bearing capacity (UBC) of interfering footings decreases until it reaches the same value as an isolated footing at greater spacing. The UBC is approximately 10% higher at S/B = 1 compared to the isolated footing. However, at S/B = 1, the UBC of two footings achieves a value equal to that of an isolated footing and does not change when the S/B ratio increases. With increasing footing depth, there is an increase in UBC. Finally, the highest values of x were obtained in all cases when Cu = 40 kPa. This indicates that the interaction between footings is greater when the soil is softer. Doi: 10.28991/CEJ-2023-09-03-017 Full Text: PDF
Torsional Strength of Reinforced Concrete Beams with Brine and Olive Oil Mill Wastewater Hamadallah Al-Baijat; Husein A. Alzgool
Civil Engineering Journal Vol 9, No 3 (2023): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-03-012

Abstract

The authors conducted a comprehensive research study on adding olive oil mill and brine wastewater to the concrete mix to investigate torsion, bending stress, shear, and compressive strength. The total number of specimens were 33 beams 100 mm (depth) × 100 mm (width) × 500 mm (length). Three beams were used as control samples, and thirty beams were divided into two groups: fifteen samples were from an olive oil mill, and the other fifteen were brine wastewater with different percentages of additive material (olive oil mill and brine wastewater), with 2.5, 5.0, 7.5, 10.0, and 15.0 % of each. The beams were reinforced with 4 ϕ 8 mm as longitudinal steel bars and ϕ 4 mm stirrups spaced at 20 mm. All specimens were tested at 28 days. It was found that the torsional strength of the samples containing brine wastewater when added at the best percentage, which is 10%, was 5.46 MPa. As is the case when adding olive oil mill wastewater with the best percentage, which is 7.5%, it was 5.16 MPa. These data are greater than the torsional strength in the reference samples, which were 4.38 MPa, meaning that the torsional strength when adding brine wastewater and olive oil mill wastewater increases by 24% and 17%, respectively. Doi: 10.28991/CEJ-2023-09-03-012 Full Text: PDF
Labor Productivity Study in Construction Projects Viewed from Influence Factors Rusdi U. Latief; N. M. Anditiaman; I. R. Rahim; R. Arifuddin; M. Tumpu
Civil Engineering Journal Vol 9, No 3 (2023): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-03-07

Abstract

Productivity is one of the fundamental factors affecting competitiveness in the construction industry. Construction and productivity are two things that are interrelated. This study aims to identify the factors and model relationship these factors that affect labor productivity using the Structural Equation Modelling (SEM) in road construction projects in Indonesia as seen from each side area I, II, and III, respectively. The results obtained the factors that influence labor productivity in road construction projects in Indonesia, namely field conditions, time, financial factors, and internal labor. The study's findings indicate that internal labor is one of the elements influencing labor productivity in Indonesian construction projects, particularly road maintenance work. Labor productivity research in Indonesia is conducted by comparing planned and realized labor productivity calculations, which are conducted by collecting project data and making firsthand observations of work in the field. Labor productivity is measured using characteristics other than the variables used in the research, as well as a larger population and sample coverage. The findings of this study can be utilized as input for government agencies in determining the ability of specialists to carry out work in the field connected to the preservation of non-structural flood handling roads on Indonesian territory. Doi: 10.28991/CEJ-2023-09-03-07 Full Text: PDF
Investigating the Consolidation Behaviour of Cement-Bentonite Barrier Materials Containing PFA and GGBS Muhammad A. Walenna
Civil Engineering Journal Vol 9, No 3 (2023): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-03-02

Abstract

Cement-Bentonite (CB) barriers are expected to become a sustainable and reliable engineering solution. The deformation of CB is of interest to engineers to comprehend, particularly how CB responds to changes in loading during its construction and service life. The purpose of this study was to examine how samples of CB mixtures behaved during consolidation. This study investigated: (1) the influence of curing time and constituent materials on the consolidation properties of CB samples, (2) the volumetric change and the rate of volumetric change in response to a specific loading condition via consolidation tests. For this purpose, a laboratory consolidation test with a load range of 50 to 3200 kPa was carried out in accordance with BS 1377-7:1990 using the oedometer apparatus. This study discovered that the consolidation characteristics of CB samples are similar to those of overconsolidated soil. The CB sample became more resistant to consolidation under varying loads as curing progressed. The presence of more bentonite resulted in an increase in the recompression index. The inclusion of GGBS contributed to the consolidation characteristics of CB through the following mechanisms: (1) the significant decrease of the degree of consolidation with a curing period longer than 28 days, despite the slow strength development of the early-age curing; (2) the increase of the preconsolidation pressure; and the addition of GGBS was found to be more effective than the addition of more bentonite in increasing the preconsolidation pressure. Doi: 10.28991/CEJ-2023-09-03-02 Full Text: PDF
Performance of Technical Supervision and Its Evaluation on Transport Constructions Petr Suchánek; Zdeněk Dufek
Civil Engineering Journal Vol 9, No 3 (2023): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-03-013

Abstract

The aim and purpose of the research are to analyze the performance of the technical supervision of the investor within the Czech construction industry during the construction, particularly focused on transport line structures. It is about clarifying the meaning and role of technical supervision in the public sector in transportation structures. In the first phase, a literature search is carried out on the current state of performance of the technical survey, and its work content is determined, including the method of its evaluation within the framework of a public contract. On the basis of these conclusions, a questionnaire is designed, which determines the real time-consuming activities during the performance of supervision and, at the same time, examines the tools used in its performance. Conclusions from the questionnaire research are examined, and steps for possible streamlining are proposed. As part of the examination of the proper evaluation of performance, a more suitable model of evaluation of these services is sought based on the previous analysis of the time-consuming nature of the technical supervision activity and according to the existing evaluation methods. Doi: 10.28991/CEJ-2023-09-03-013 Full Text: PDF
Behaviour of Steel I Beams with Web Openings Jinan Laftah Abbas
Civil Engineering Journal Vol 9, No 3 (2023): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-03-08

Abstract

This paper aims to study the behavior of steel I beams with web openings. However, web openings might lead to a noteworthy reduction in the load-carrying capacity of beams, but can also be so supportive and essential from an economic point of view. An experimental investigation and nonlinear three-dimensional finite element analysis using the ABAQUS computer program were planned and conducted on six steel I-beams having the same dimensions, different diameter ratio spacing, and opening shapes such as circular, rectangular, and hexagonal. Experimental results showed that the ultimate load of a steel beam with web openings reduced with an increase in the area of the opening. A circular opening has a stronger shape than a rectangular opening because a rectangle has fast deflection and torsion angles, so it resists an applied load less than a circular opening. Also, the beam with hexagonal openings is better than that with rectangular openings because hexagonal openings are more resistant to deflection and deformation than rectangular openings. The finite element results, which are validated against the experimental results, show good accuracy with the experiment. Besides, a parametric study is presented here to study the influence of varying the shape of openings on the value of the failure load and midspan deflection. It can be noticed that the steel beam with a circular opening, which had been tested experimentally and modeled by the Abaqus program, is the best case and gives a higher failure load as compared to the diamond, octagonal, trapezoidal, transverse, and longitudinal ellipses. Thus, providing web openings reduces the weight and increases structural efficiency. Doi: 10.28991/CEJ-2023-09-03-08 Full Text: PDF
Monitoring and Modelling Morphological Changes in Rivers Using RS and GIS Techniques Zainab Dekan Abbass; Jaafar S. Maatooq; Mustafa M. Al-Mukhtar
Civil Engineering Journal Vol 9, No 3 (2023): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-03-03

Abstract

River geomorphological investigation issues have received little attention in most countries of the world. Such processes become a pressing necessity due to climate change and anticipated events of extraordinary surges and dry seasons, which may debilitate the security of adjacent and downstream cities, particularly in locales that are exceedingly delicate and influenced by climatic changes. Al-Abbasia reach is a river that runs through the middle of the Euphrates River and is known for its numerous bends and meanders. The study of hydraulic structures such as barrages can provide important information about their influences on morphological processes in river reaches near the barrage upstream and downstream. Hydraulic analysis is made of the river behavior in u/s and d/s of hydraulic structures like barrages as a result of sediment deposition and erosion in u/s and d/s. A study, i.e., research on the impacts of the Abbassia barrage on the river system, has been conducted to address this issue using multi-temporal Landsat satellite data from 1976 to 2022 provided by the USGS. The study reach is located 5 kilometres upstream and 5 kilometres downstream of the Abbassia reach. Following the construction of the barrage, which had an impact on the sedimentation and geometry of the river, morphological variations took place in this part of the Al Abbassia reach. In this study, morphological changes throughout 49 years between 1976 and 2022 were investigated utilising remote sensing (RS) and geographic information system (GIS) approaches. Additionally, four image groups from three separate decades were used to perform change detection (1990–2000, 2000–2010, and 2010–2022). In this study, a monitoring system using Landsat-3 MSS: 1985, Landsat-5 TM: 1990, 1995, 2000, 2005, and Landsat-8 OLI: 2010, 2011, 2015, 2021, 2022 were employed to map river planform changes. The long-term comparison of this series of satellite images and historical maps for the period 1976–2022 indicates a continuation of change in the reach study with a rate of approximately 56, 33, 97, and 55% for upstream and 19%, 26%, 3%, and 45% for downstream for the width, area, deposition, and erosion, respectively. Furthermore, it is observed that there is a shift in river course within 200 m downstream of the barrage for the period of 1985–1990. The findings of this study, which monitor river morphological change at finer temporal and spatial resolutions, are crucial for promoting sustainable river management. They also aid in the investigation of river behaviour, which is necessary for providing the best management possible and overcoming the difficulties posed by this important research issue. Doi: 10.28991/CEJ-2023-09-03-03 Full Text: PDF
Strength Characteristic of Lightweight Modular Block (LMB) Element using Stabilized Dredged Soil-EPS Nurul Marfuah; Tri Harianto; A. B. Muhiddin; Rita Irmawaty
Civil Engineering Journal Vol 9, No 3 (2023): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-03-014

Abstract

For several decades, lightweight material applications have been extensively studied. Modifying various types of soil with EPS beads or lightweight geomaterials is an alternative construction material on site that can reduce excessive problems such as large deformation and lateral pressure. This study aims to examine the strength characteristics of lightweight geomaterials, namely lightweight modular block/LMB. LMB is composed of EPS beads, dredged soil, and cement. The cement amounts are 3%, 5%, 7%, and 9%, with EPS variations of 0.5% and 0.75% to the mixture weight. Laboratory tests were conducted to investigate the strength with unconfined compression and undrained direct shear tests. Before testing, the specimens were made using the one-layer static compaction method and were cured for 7, 14, and 28 days. This paper also presents explanations related to the specimens making and treatment by providing preliminary test results to compare the effectiveness of the three-layer and one-layer methods. Moreover, the curing treatments to avoid cracking were explained explicitly. The result shows linearity between both increasing the amount of cement and adding more curing time to the increase of the strength parameter. In contrast, adding more EPS decreased the strength, but adding cement helped increase the strength parameter with a remarkable value at C7% and C9%. Increasing the amount of EPS also reduced the density of the mixture by 18%–29%. Doi: 10.28991/CEJ-2023-09-03-014 Full Text: PDF

Page 1 of 2 | Total Record : 17


Filter by Year

2023 2023


Filter By Issues
All Issue Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue