cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 17 Documents
Search results for , issue "Vol 9, No 5 (2023): May" : 17 Documents clear
Estimate Suitable Location of Solar Power Plants Distribution by GIS Spatial Analysis Baydaa Abdul Hussein Bedewy; Sophia Rezaq Ali Al-Timimy
Civil Engineering Journal Vol 9, No 5 (2023): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-05-013

Abstract

This study proposes a model for the best investment in renewable energy plants that uses DEM, Spatial Analysis, and analysis of indicator weights by AHP to choose a suitable place to locate the solar plants, which increases their efficiency. This is because renewable energy is the most important component of future sustainability. In addition, the cities of Iraq, including Babylon, have increased the proportion of the population, which has led to high rates of urbanization and a lack of services. In particular, the need for services increased, especially electric power, which is characterized by its inefficiency and insufficiency. Yet, the governorate is a good source of solar energy and regular radiation. Therefore, the trend to use renewable energy is the optimal solution, and this manuscript proposes multiple criteria that can determine the optimal locations for building solar energy farms. So methods of analysis are the Digital Elevation Model (DEM), the slope of the earth, efficient distances from the city center, the main road networks and electricity distribution networks, and average solar brightness (hours/day) quantity. Finally, the spatial analysis of all indicators shows eight sites. By using criteria of analysis based on AHP analysis, the result is that six represent suitable sites chosen as sufficient space to locate solar plants. Consequently, the results of this manuscript for solar energy collection projects show percentages ranging between 2% and 37%, with areas starting with 10 ‎km2 and gradually rising towards the largest proposed area of 155 km2, distributed over the province so that the total proposed areas for solar energy collection projects will be about 422 km2. All that aim to achieve the best service in quality and quantity of renewable energy to establish sustainability and efficiency economic modeling in addition to increasing production efficiency. Doi: 10.28991/CEJ-2023-09-05-013 Full Text: PDF
An Investigation on Eco Friendly Self-Compacting Concrete Using Spent Catalyst and Development of Structural Elements Balamuralikrishnan R.; Ranya Al-Balushi; Asima Kaleem
Civil Engineering Journal Vol 9, No 5 (2023): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-05-08

Abstract

The theme of this initiative is "Waste to Wealth." Construction materials, particularly concrete, need to have better qualities, including strength, rigidity, durability, and ductility, because Oman's construction industry is expanding. Self-compacting concrete (SCC) has more benefits than regular concrete, including better workability. The major focus of this study is the C30-grade SCC for the control mix, spent catalyst (zeolite catalyst)-based SCC, and the development of the RC beam's flexural behavior employing control and spent catalyst-based SCC. The preliminary study and the main study are the two study outcomes included in this project. Preliminary research involves creating four mixtures with various dosages of 3%, 6%, 9%, and 12% in order to optimize spent catalyst in C30 grade concrete. All of the cubes undergo a 28-day curing test. The cubes' compressive strength is tested in order to establish the ideal dosage, which is 9%. Develop a C30 grade control modified design mix in accordance with SCC and optimize chemical admixtures such as superplasticizer (SP) at different dosages, like 2, 2.5, 3, and 3.5%, using various trials and tests (slump flow, L-box, J-ring, V-funnel, and U-box tests), as well as the optimized dosage of spent catalyst (SC). The main study includes six singly reinforced RC beams with dimensions of 750 (L)×100 (B)×150 mm (D) that were cast and tested in the laboratory. After a 28-day curing period, two specimens were placed under a two-point loading setup, with the remaining two samples receiving the optimum dosages of spent catalyst and superplasticizer. All of the beams were tested using a Universal Testing Machine (UTM) with a 1000 kN capability. From the preliminary study, partial substitution of cement in control concrete of grade C30 using spent catalyst (SC), it was found that the 9% optimum dosage produces greater compressive strength compared to other doses, which are almost 10% rises at 28 days of curing period. Based on a different test, it was discovered that the optimum dose of 3% SP gave closer agreement and satisfied the need for SCC as per the BS standard. The load-carrying capability of the SCC beams is almost 21.7% higher than that of the control beams. Comparing the SCC beams to the control beams, their deflection was reduced by about 26% at the same load level, and their ductility rose by almost 33%. Comparatively to the control beam, the stiffness of 21.6% of SCC also rises. According to test results, the SCC beam performs better in every way when superplasticizer and spent catalyst are used at the recommended dosage. Doi: 10.28991/CEJ-2023-09-05-08 Full Text: PDF
Demand Modeling for Taxi and Ride-hailing Transport Services (RTS) Gito Sugiyanto; . Yanto; Aris Wibowo; Toni Tauladan; Tory Damantoro
Civil Engineering Journal Vol 9, No 5 (2023): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-05-03

Abstract

The rapid growth of Ride-hailing Transport Services (RTS) demand is found to have caused a fierce market share battle with conventional taxis in previous decades. In selecting a taxi or RTS, understanding the factors affecting passenger’s decisions is substantial for better development and more reliable transit service. The aims of this study to evaluate the demand for taxis and RTS in the Jakarta Greater Area, Indonesia, using the demand-supply and dynamic models. It has been conducted by using 519 respondents, with the model inputs consisting of waiting and travel time, trip costs, and the destination of the conventional passengers. Moreover, the choice between taxi and RTS was analyzed based on the stated preferences of respondents. The results showed that the waiting and travel time, as well as costs per trip of RTS, were 1.49 and 2.67 minutes lower and IDR10,902 cheaper than a taxi, respectively. The factors influencing the demand for these transport modes were also the number of trips per-day, mode share, the average vehicle occupancy, operating hours/day, passengers and driver waiting time, as well as travel period. In the dynamic model, the addition of variable service area, peak hour, and average vehicles speed was subsequently observed. Based on the results, the requests for these transport modes in the Greater Area of Jakarta were 64,494 and 55,811 vehicle units for the demand-supply and dynamic models, respectively. This proved that the dynamic model was better than the demand-supply, due to the added parameters representing the area’s traffic characteristics. Additionally, subsequent future research are expected to focus on modeling of taxi and RTS demands through the global positioning system data, as well as analysis using machine learning and deep learning. Doi: 10.28991/CEJ-2023-09-05-03 Full Text: PDF
Using FEM-AI Technique to Predict the Behavior of Strip Footing Rested on Undrained Clay Layer Improved with Replacement and Geo-Grid Ahmed M. Ebid; Kennedy C. Onyelowe; Mohamed Salah; Edward I. Adah
Civil Engineering Journal Vol 9, No 5 (2023): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-05-014

Abstract

The objective of this research is to predict how strip footings behave when rested on an undrained clay layer enhanced using a top replacement layer with and without a geo-grid. The study was conducted in several stages, including collecting load-settlement curves from "Finite Element Method" (FEM) models with different clay strengths, replacement thicknesses, and axial stiffnesses of the geo-grid. These curves were then idealized using a hyperbolic model, and the idealized hyperbolic parameters were predicted using three different AI techniques. According to the numerical results, the ultimate bearing pressure of pure clay models was found to be five times the undrained strength of the clay. These findings align with most established empirical bearing capacity formulas for undrained clays. The results also suggest that the initial modulus of the subgrade reaction is solely influenced by replacement thickness. Additionally, the enhancement in subgrade reaction due to the replacement layer decreases with increasing clay strength. However, the percentage of improvement decreased with higher clay strength. Moreover, the impact of the geo-grid was significant for settlement beyond 50mm, and it was more impactful in soft clay than in stiff clay. Finally, the research proposed predictive models employing the "Genetic Programming" (GP), "Artificial Neural Networks" (ANN), and "Evolutionary Polynomial Regression" (EPR) techniques, and these models exhibited an accuracy of about 88%. Doi: 10.28991/CEJ-2023-09-05-014 Full Text: PDF
Neutralization of Acidity (pH) and Reduction of Total Suspended Solids (TSS) by Solar-Powered Electrocoagulation System Elanda Fikri; Irfan A. Sulistiawan; Agus Riyanto; Aditiyana Eka Saputra
Civil Engineering Journal Vol 9, No 5 (2023): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-05-09

Abstract

This study investigates the effect of electrocoagulation contact time on the pH and TSS of wastewater discharged from the wastewater treatment plant (WWTP) of the Psychiatric Hospital of West Java Province. The experiment followed the pretest-posttest control group design. This study involved testing 56 wastewater samples six times before and after treatment. Each treatment was repeated four times, and there was one control group for each repetition. The electrocoagulation tool used in this study consisted of six 1-mm electrode plates that were 8 cm apart, a current strength of 5A, a voltage of 12V, and a 50-Watt solar panel. The data were analyzed using descriptive and inferential statistics. The results showed that all electrocoagulation contact time treatments had a significant effect on increasing the pH and the TSS. Additionally, the electrocoagulation tool was found to be effective, stable, portable, and environmentally friendly, with a self-cleaning system that reduced operational costs and saved electricity through the use of solar panels. This study contributes to the development of an effective electrocoagulation toll for wastewater treatment and the determination of the optimal contact time for the tool, providing a practical solution to overcome the problems of pH and TSS in wastewater. These findings can be applied to other wastewater treatment plants, thus improving the quality of discharged wastewater. Doi: 10.28991/CEJ-2023-09-05-09 Full Text: PDF
Shear Behavior of Reinforced Concrete Inverted-T Deep Beam Hoda Shousha; Rasha T. S. Mabrouk; Akram Torkey
Civil Engineering Journal Vol 9, No 5 (2023): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-05-04

Abstract

Contrary to top-loaded deep beams, Inverted-T (IT) deep beams are loaded on ledges at the beam’s bottom chord. The presence of the load near the bottom of the beams creates a tension field in the web at the loading points. An experimental investigation was carried out in which 8 specimens of reinforced concrete IT deep beams were tested and the effect of the following variables was studied: changing the hanger diameter, hanger arrangement in terms of spacing and distribution distance, hanger reinforcement ratio, vertical and horizontal web shear reinforcement diameter, and spacing. In addition, all the tested beams had long ledges extending to the end of the beam. It was concluded that hanger reinforcement diameter and horizontal web shear reinforcement have an insignificant effect on the IT deep beam capacity. While the change in hanger arrangement, vertical web reinforcement, and ledge length has a significant effect on IT deep beam capacity. The maximum spacing of the hanger reinforcement and the minimum hanger reinforcement ratio passing through the load plate length will be studied in the following publication. A finite element model (FEM) was presented to predict the behavior of IT deep beams. The simulation was carried out using the ABAQUS 2017 software program. The results of the numerical model showed good agreement with the experimental program. Analysis using design codes was checked against the experimental data, where the computed beam capacities were compared to those obtained from the test results. The comparison showed a remarkable difference between the predictions using the design codes and the test results. Computation using design codes significantly underestimated the capacities of the beams. Doi: 10.28991/CEJ-2023-09-05-04 Full Text: PDF
Study of the Effect of Magnetic Field on Dispersion of Crushed Portland Cement and Tensile Strength of Cement Stone Ruslan Ibragimov; Evgenij Korolev; Evgeny Khorkov; Linur Gimranov
Civil Engineering Journal Vol 9, No 5 (2023): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-05-015

Abstract

This paper investigates the effect of a magnetic field on the grinding processes of Portland cement and the axial tensile strength of cement stone. It was found that the dispersion composition of Portland cement is affected by the magnetic field in two modes. Moreover, the grinding of Portland cement without a magnetic field has subtle modes within small particles (0.1–0.4 microns). The grinding of Portland cement with a magnetic field demonstrates an increase in the mode area of small particles and a decrease in the area of large particles (more than 1.6 microns), with an increase in processing time. In this work, the previously established magnetoplastic effect was confirmed in cement stone only in crystalline samples. The determined effect on cement stone is to reduce its strength by 53-59% and simultaneously increase relative deformation by 63–149%, depending on the specimen size and type. The magnetoplastic effect is also visually recorded on scans of the crack edges in cement stone examined using probe microscopy. The obtained experimental data confirm the validity of the proposed hypothesis of the effect of the magnetic field on polycrystalline materials with isotropic structure, in particular portland cement and cement stone, which consists in the fact that the magnetic field contributes to the accumulation of dislocations in the material, an acceleration of their movement, and the development of cracks. Doi: 10.28991/CEJ-2023-09-05-015 Full Text: PDF

Page 2 of 2 | Total Record : 17


Filter by Year

2023 2023


Filter By Issues
All Issue Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol. 10 No. 7 (2024): July Vol 10, No 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue