cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 17 Documents
Search results for , issue "Vol 9, No 7 (2023): July" : 17 Documents clear
The PVD-Accelerated Soil Deposit Consolidation Based on Elliptic Cylindrical Model Yulvi Zaika; Gilang R. Kololikiye; . Harimurti
Civil Engineering Journal Vol 9, No 7 (2023): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-07-08

Abstract

One method to deal with the problem of soft soil is to accelerate consolidation by preloading and prefabricating a vertical drain (PVD). Consolidation analysis was based on a one-dimensional theory that required PVD as an equivalent circular well. Further studies on a simple approximate for consolidated soil were represented by equivalent permeability coefficients, kve. The equivalent conductivity coefficient is influenced by the soil and PVD permeability coefficients. The formulation of kve based on the influence area in cylindrical has been applied to a lot of construction projects. According to the comparative analysis of the classical consolidation theory, it is considered that the diameter of the circle is less representative. This study proposed a simple formulation of kve based on the elliptical assumption of influence area. The kvewas derived based on an equal average degree of consolidation in one dimension, which applied the elliptical coordinate for degree of consolidation in the radial direction. The formulation is based on an elliptical cross-section and a cylindrical coordinate formulation. The validation of this formula is conducted with numerical calculations using 2D FEM. The results show that the consolidation time in the elliptical discharge area is shorter than that in the circular discharge area. Doi: 10.28991/CEJ-2023-09-07-08 Full Text: PDF
Reducing Effects of Initial Imperfection by Investment in the Orthotropic Characteristics of Laminated Composite Plate Wisam Hamzah Mohammed; Svetlana Shambina; Haider Kadhim Ammash
Civil Engineering Journal Vol 9, No 7 (2023): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-07-03

Abstract

The target of this study is to reduce the impact of initial imperfection on the nonlinear dynamical performance of laminated composite plates by taking advantage of the orthotropic characteristics of laminated composite plates by changing carbon fiber sawing in the mass matrix and fiber orientation with different patterns and studying the effect of this optimization without and with initial imperfection (Wo) and different aspect ratios (W/L) and various boundary conditions through analyzing the load-displacement responses for plates under axial in-plane compressive loads by using the FORTRAN 94 programming language. Von-Karman's assumptions are utilized to include geometric nonlinearity for nine node isoperimetric quadrilateral components with five degrees of freedom into the structural model, which is based on first-order shear deformation theory. The Newmark’s implicit time integration method and Newton-Raphson iteration concurrently are employed to solve the nonlinear governing equation in conjunction. The study proved the effectiveness of the carbon fiber's varying geometric distribution and the difference in its directions in reducing the negative effects of the initial imperfection on the large elastic-plastic displacement and critical buckling. To highlight the veracity of the results, some of them have been validated against those found in the literature review. Doi: 10.28991/CEJ-2023-09-07-03 Full Text: PDF
Climate Forecasting Models for Precise Management Using Extreme Value Theory Pannarat Guayjarernpanishk; Monchaya Chiangpradit; Butsakorn Kong-ied; Nipaporn Chutiman
Civil Engineering Journal Vol 9, No 7 (2023): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-07-014

Abstract

The objective of this research was to develop a mathematical and statistical model for long-term prediction. The Extreme Value Theory (EVT) was applied to analyze the appropriate distribution model by using the peak-over-threshold approach with Generalized Pareto Distribution (GPD) to predict daily extreme precipitation and extreme temperatures in eight provinces located in the upper northeastern region of Thailand. Generally, each province has only 1–2 meteorological stations, so spatial analysis cannot be performed comprehensively. Therefore, the reanalysis data were obtained from the NOAA Physical Sciences Laboratory. The precipitation data were used for spatial analysis at the level of 25 square kilometers, which comprises 71 grid points, whereas the temperature data were used for spatial analysis at the level of 50 square kilometers, which includes 19 grid points. According to the analysis results, GPD was appropriate for the goodness of fit test with Kolmogorov-Smirnov Statistics (KS Test) according to the estimation for the return level in the annual return periods of 2 years, 5 years, 10 years, 25 years, 50 years, and 100 years, indicating the areas with daily extreme precipitation and extreme temperatures. The analysis results would be useful for supplementing decision-making in planning to cope with risk areas as well as in effective planning for resources and prevention. Doi: 10.28991/CEJ-2023-09-07-014 Full Text: PDF
The Influence of a Damaged Concrete Cover on the Behavior of a Simply-Supported Beam Khalid K. Shadhan; Bilal Ismaeel Abd Al-Zahra; Muhammad Jawad Kadhim
Civil Engineering Journal Vol 9, No 7 (2023): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-07-09

Abstract

The concrete cover is a part of the concrete that provides the required protection for the reinforcing steel within the required element from external effects. This concrete cover can be damaged for an assortment of reasons, one of which is environmental factors. As a result, this research focused on the effect of worn concrete covering on the structural response of beams. Moreover, the possibility of repairing or replacing this concrete cover with a cement material was done by testing seven beams with the exact dimensions (2700 mm long, 250 mm deep, and 140 mm wide). The first specimen was a control specimen, while in the remaining specimens, a part of the concrete cover was removed in the midspan region with a length of 600 mm and in different formats. The part below the neutral axis (tension zone) was removed in the first two specimens. The part above the neutral axis (the compression zone) was removed in the second two specimens. The whole cover was removed within the specified distance for the other two specimens. In one out of every two of these six specimens, the removed concrete cover was replaced with cementitious material. A flexural test was performed for all specimens, and the conclusion was reached that damaging or removing the concrete cover from the tensile region (below the neutral axis) is less harmful than from the compression region since the beam is often designed as a cracked section. Also, removing the concrete cover from the compression region gives cracks a greater width than removing the concrete cover from the tension region at the same loading level. In the case of replacing the concrete cover with a cementitious one, if the replacement is in the compression zone, it will result in cracks when loading with a width greater than that of the rest of the cases. For specimens that removed their concrete covers from the tension zone, compression zone, and the whole section, the failure loads decreased by 39%, 20%, and 23%, respectively, concerning the control beam. In contrast, all these specimens were repaired with cementitious materials, with an ultimate load capacity approximately equal to the control beams. From these results, any damaged concrete cover for beams in any zone with cementitious materials having high strength and a good bond with old concrete sections can be repaired. Doi: 10.28991/CEJ-2023-09-07-09 Full Text: PDF
Effect of Portland Cement on Mechanical and Durability Properties of Geopolymer Concrete at Ambient Temperature Seick Omar Sore; Yawo Daniel Adufu; Philbert Nshimiyimana; Adamah Messan; Gilles Escadeillas
Civil Engineering Journal Vol 9, No 7 (2023): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-07-04

Abstract

Environmental concerns have prompted researchers to focus on the development of alternative building materials like geopolymer concrete. However, their implementation requires curing beyond 60°C, which limits their application on building sites. This study aims to design a geopolymer concrete at room temperature (30 ± 5°C) in a laboratory in Burkina Faso using a metakaolin-based geopolymer binder activated by an alkaline solution of NaOH and natural aggregates. Portland cement type CEM I 42.5 was used by mass substitution (0 to 25%) of metakaolin to promote curing at ambient temperature. The samples were cured for 7 to 28 days and characterized for physical, mechanical, and durability properties. The results showed that the incorporation of 0 to 20% cement significantly improved the compressive strength from 9.9 to 30.5 MPa and the tensile strength from 1.2 to 2.2 MPa. However, Portland cement has various effects on the durability of geopolymer concrete. It reduces the porosity accessible by water from 15 to 13% and decreases the resistance to acid attack by increasing the mass loss from 2 to 7%. This confirms that common concrete types C20/25 or C25/30 can be casted using geopolymer concrete on the sites in Burkina Faso once their durability is confirmed. Doi: 10.28991/CEJ-2023-09-07-04 Full Text: PDF
The Reliability of W-flow Run-off-Rainfall Model in Predicting Rainfall to the Discharge D. Riyadi Tama; Lily M. Limantara; E. Suhartanto; Y. Padma Devia
Civil Engineering Journal Vol 9, No 7 (2023): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-07-015

Abstract

This research intends to predict the discharge (run-off) from rainfall for which the model is built using W-flow. The research location is in the Gajah Mungkur reservoir (Wonogiri) in Indonesia. The estimation of reservoir inflow has an important role, mainly in the scheme of reservoir operation and management. However, the heterogeneity of complex spatial and temporal patterns of rainfall and also the physiographic context of a watershed cause the development of a model of real-time run-off and rainfall that can accurately predict the reservoir inflow to become a challenge in the development of water resources. In relation to the analysis and prediction of rainfall, the constraint and problem that is still often faced is the minimal availability of observed rainfall data spatially as well as temporally; the time series of rainfall data is not long and complete enough; and the number of rainfall stations is less evenly distributed. The methodology consists of carrying out the literature study, collecting as much rainfall data as possible to build a W flow model, then carrying out the model calibration and analyzing the prediction of real-time reservoir inflow for operation. The result shows that the dependable discharge of the Wonogiri watershed shows that there are two peak discharges, which happened on February II (the second half of February) and December II (the second half of December). However, the discharge is decreasing in July and reaching its lowest level in October II (the second half of October). Doi: 10.28991/CEJ-2023-09-07-015 Full Text: PDF
Historical Arch Bridges-Deterioration and Restoration Techniques Amin Bagherzadeh Azar; Ali Sari
Civil Engineering Journal Vol 9, No 7 (2023): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-07-010

Abstract

Historic buildings are the most valuable evidence of cultural heritage. They play an essential role in establishing a tangible link between the past and the present by understanding, interpreting, and tracing the epoch of civilization. Unfortunately, the high costs of restoration, vandalism, and arson take their toll. However, new technologies are having a positive impact on the restoration process and are becoming a suitable alternative to labor-intensive, expensive, and unsafe traditional inspections. Therefore, the role of non-destructive testing (NDT) as a new method is becoming more evident. Faro laser scanning, impact echo, impulse sound testing, and geoelectric tomography as non-destructive methods are leading to the inspection of historic structures to preserve their character. These new methods are representative of the development of non-contact techniques for the examination and documentation of structures. Non-destructive testing examines the internal and external structure of complex building components as well as defective areas, quantifies cracks, and detects near-surface moisture. The objective of this work is to identify new adventurous and traditional methods for the reconstruction of the Turkish arch bridges Dara-1 and Halilviran to determine the appropriate rehabilitation methods and their deterioration of construction materials, damage, and failure patterns. Bridge dimensions were measured using a Faro laser scanner, which allows inspectors to capture and evaluate data from bridges and structural components without permanently altering them. The laser captures bridge dimensions by scanning cross-sections of the structure in the horizontal and vertical planes. The data is exported in the form of point clouds that represent all visible aspects and actual dimensions of the bridge in 2D and 3D models. In comparison between traditional and laser scanning methods, the main advantages of the applied method are the time savings on-site and the creation of a three-dimensional model of the structure, which can be used to collect precise and accurate surface data of objects in a non-destructive manner. Doi: 10.28991/CEJ-2023-09-07-010 Full Text: PDF

Page 2 of 2 | Total Record : 17


Filter by Year

2023 2023


Filter By Issues
All Issue Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue