cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Chemistry
ISSN : 14119420     EISSN : 24601578     DOI : -
Indonesian Journal of Chemistry is an International, peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry including applied chemistry. The journal is accredited by The Ministry of Research, Technology and Higher Education (RISTEKDIKTI) No : 21/E/KPT/2018 (in First Rank) and indexed in Scopus since 2012. Since 2018 (Volume 18), Indonesian Journal of Chemistry publish four issues (numbers) annually (February, May, August and November).
Arjuna Subject : -
Articles 9 Documents
Search results for , issue "Vol 1, No 2 (2001)" : 9 Documents clear
Preparation of Nickel/Active Carboncatalyst and its Utilization for Benzene Hydrogenation Enggelena Septiawati; Iip Izul Falah; RHA. Sahirul Alim
Indonesian Journal of Chemistry Vol 1, No 2 (2001)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (7362.366 KB) | DOI: 10.22146/ijc.21951

Abstract

The research on the preparation of nickel catalyst impregnated on active carbon by two methods has been carried out. The impregnation of Ni metal was done using nickel(II) chloride as a precursor. The impregnated of Ni metal on samples in A method was made in varying of percentage i.e., 0.5, 1.0 and 2.0% (w/w) as the weight proportion of Ni to active carbon and NiCl2.6H20. The concentration of Ni that would be impregnated on samples in B method was made close to Ni content of samples in A method determined by atomic adsorption spectrometry. Preparation of nickel/active carbon catalyst with A method was done with dipping the active carbon in the nickel(II) chloride solution followed by filtering and then drying at 110 °C for 4 hours, and then calcination by flowing nitrogen and reduction by hydrogen, each at 400 °C at 4 hours. The treatments made on samples in A method was also done on samples in B method, the only difference was evaporating all of precursor solution after dipping active carbon in that precursor solution was done in B method. The characterization includes: iodium adsorption test, determination of nickel content by means of atomic adsorption spectrometry, and acidity by adsorption of ammonia methods. Test of catalyst activity was done by means of hydrogenation of benzene to cyclohexane at 150, 200 and 250 °C, the pressure of 1 atm and the flow rate of hydrogen 6 mL/minute. The products were analyzed by gas chromatographic method. The results show that A method produced a catalyst with relatively low nickel content. However the acidity and ability to convert benzene to cyclohexane were relatively high and it increased as increasing the content of nickel. The temperature of the reaction was achieved at 250 °C which gave the yield on conversion of 25.3678%. The catalyst obtained by B method in the same condition of hydrogenation gave only smaller results.
Spectrophotometric Determination of the CuSO4 Soret Coefficient of a CuSO4-H2O Binary Solutions System Ijang Rohman; Djaka Sasmita; Iip Izul Falah
Indonesian Journal of Chemistry Vol 1, No 2 (2001)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4676.677 KB) | DOI: 10.22146/ijc.21946

Abstract

A spectrophotometric technique for the determination of the CuSO4 soret coefficient of a CuSO4-water binary solutions system is described. A short column of solutions is placed between horizontal metal plates that are held at different temperatures. The subsequent changes in composition due to thermal diffusion are followed by monitoring changes of transmittance near the end of the solutions column. In water, CuSO4 diffuses to the warm compartment of column. The soret coefficient of CuSO4 0.0254 molal in water agrees with the appropriate theory, i.e. 17.60x10-3 °C-1 on the average.
Study on the Interference of Iron, Aluminium and Silicon on the Atomic Absorption Spectrometric Determination of Mangan in Laterite Mineral Sulistyo Saputro; Ngatidjo Hadipranoto; Agus Kuncaka
Indonesian Journal of Chemistry Vol 1, No 2 (2001)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (7905.66 KB) | DOI: 10.22146/ijc.21950

Abstract

Interference of iron, aluminum and silicon on the determination of mangan in laterite mineral by atomic absorption spectrometry has been investigated. Dissolution of laterite mineral into solution have been carried out by wet method destruction using combination of 7 mL of aquaregia, 7.5 mL of concentrated perchloric acid and 9 mL of fluoride acid 48% In sealed teflon flask heated at temperature of about 110 °C for 3 hours to determine the content of Mn element in laterite mineral directly. Interference of these three metals were carried out by evaluating the differences of Mn absorbance at wavelength 279.50 nm and slit width 0.2 nm between the solutions containing mangan only and those containing the some amount of mangan together with the interfering elements at those concentration range in laterite mineral. The result showed that both iron at concentration of 100 ppm until 500 ppm and aluminum at concentration at 3 ppm until 15 ppm caused significant and non-linear interference on the determination of Mn 2 ppm. Interference of iron was effectively eliminated by releasing action of aluminum. The signal depression reductional decrease due to 234 ppm of silicon on the determination of Mn 2 ppm can be eliminated by adding 2.30 mL of CaCl2 0.2% (m/v) into these solution. The content of Mn in the laterite mineral after and before adding of CaCl2 into solution were 2407.04 ± 59.26 μg g-1 and 2311.76 ± 23.61 μg g-1, respectively. This result was significantly different at confidence level 95% as shown by the value of tcalculated=4.91 that was higher than ttable=4.30.
Isolation and Identification of Volatile Components in Tempe by Simultaneous Distillation-Extraction Method by Modified Extraction Method Syahrial Syahrial; M. Muchalal
Indonesian Journal of Chemistry Vol 1, No 2 (2001)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6976.393 KB) | DOI: 10.22146/ijc.21945

Abstract

An isolation and identification of volatile components in temps for 2, 5 and 8 days fermentation by simultaneous distillation-extraction method was carried out. Simultaneous distillation-extraction apparatus was modified by Muchalal from the basic Likens-Nickerson's design. Steam distillation and benzena as an extraction solvent was used in this system. The isolation was continuously carried out for 3 hours which maximum water temperature In the Liebig condenser was 8 °C. The extract was concentrated by freeze concentration method, and the volatile components were analyzed and identified by combined gas chromatography-mass spectrophotometry (GC-MS). The Muchalal's simultaneous distillation extraction apparatus have some disadvantage in cold finger condenser, and it's extractor did not have condenser. At least 47, 13 and 5 volatile components were found in 2, 5 and 8 days fermentation, respectively. The volatile components in the 2 days fermentation were nonalal, ɑ-pinene, 2,4-decadienal, 5-phenyldecane, 5-phenylundecane, 4-phenylundecane, 5-phenyldodecane, 4-phenyldodecane, 3-phenyldodecane, 2-phenyldodecane, 5-phenyltridecane, and caryophyllene; in the 5 days fermentation were nonalal, caryophyllene, 4-phenylundecane, 5-phenyldodecane, 4-phenyldodecane, 3-phenyldodecane, 2-phenyldodecane; and in the 8 days fermentation were ethenyl butanoic, 2-methy1-3-(methylethenyl)ciclohexyl etanoic and 3,7-dimethyl-5-octenyl etanoic.
Preparation of Peleted Ni-Pt/Zeolite for Conversion of Amyl and Isoamyl Alcohol to Hydrocarbon Abdullah Abdullah; Triyono Triyono; Bambang Setiaji
Indonesian Journal of Chemistry Vol 1, No 2 (2001)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6301.581 KB) | DOI: 10.22146/ijc.21944

Abstract

Catalysts with Ni and Pt as active metals in peleted zeolite were used for conversion of amyl alcohol, isoamyl alcohol and their mixture to hydrocarbon compounds. The catalysts were prepared by impregnation the peleted zeolite in NiCl2.6H2O and PtCI4 solution, while stirring for 24 hours then followed by oxidation with 02 gas at 350 °C for 2 hours and reduced by hydrogen gas at 400 °C for 1 hour. Ni and Pt in catalysts were determined by MS, specific surface area, total pore volume and gas sorption analyzer NOVA-1000 determined pore radius average. Determination of catalysts acidity was carried out by absorption of ammonia method. The activity of catalysts was evaluated in a micro reactor by flow system. Experimental temperature by varied between 300 and 400 °C with the increment of 25 °C. Products were analyzed by gas chromatographic and mass spectrometric method. The result shows that Ni-Pt/zeolite is more active than Ni/zeolite can be used for converting all of the alcohol. Products for conversion are 2-pentene, 2-methyl-1-butene, 2-methyl-2-butene, cyclopentane, 3-methyl-1-butanaldehide and acetone. The highest conversion was observed on isoamyl alcohol (31.37%) at 400 °C.
Synthesis of Chalcone and Flavanone Compound Using Raw Material of Acetophenone and Benzaldehyde Derivative Ismiyarto Ismiyarto; Sabirin Matsjeh; Chairil Anwar
Indonesian Journal of Chemistry Vol 1, No 2 (2001)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6957.923 KB) | DOI: 10.22146/ijc.21948

Abstract

Synthesis of flavanoid compounds of chalcone and flavanone groups have been conducted. Flavanoid Is one of the group natural products which is mostly found in plants and have been proved to have physiological activity as drug. In this research, chalcone proup compounds that being synthesized are: chalcone, 3,4-dimethoxychalcone, 2'-hidroxy-3,4-dimethoxychalcone where as compound of flavanone group that being synthesized is 3',4'-dimethoxyflavanone. The synthesis of chalcone group are carried out based on Claisen-Schmidt reaction by using raw material of aromatic aldehydes and aromatic ketones. The synthesis in carried out by stirring at the room temperature using alkali solution as catalyst and ethanol as solvent. The synthesis of 3',4'-dimethoxyflanone is made based on the nucleophilic 1,4 addition of the unsaturated α,β ketone. The synthesis is made by refluxing 2'-hydroxy-3,4-dimethoxychalcone in alkali condition for 12 hours. The identification of flavanoid compound is carried out by using spectroscopic IR, GC-MS and 1H-NMR methods. The result of each synthesis chalcone group are follows: chalcone as yellowish solid with m.p= 50 °C and the yield is 83.39%; 3,4-dimethoxychalcone as yellow solid with m.p= 57°C and the yield is 76.00% ; 2'-hydroxy-3,4-dimethoxychalcone as orange solid with m.p= 90 °C and the yield is 74.29%, for 3',4'-dimethoxyflavanone as pale yellow solid with m.p= 80 °C and the yield is 72.00%.
Study of the Gold Extraction Using Tetra N-Butyl Ammonium Chloride-Chloroform Yuli Puspito Rini; Agus Kuncaka; Ngatidjo Hadipranoto
Indonesian Journal of Chemistry Vol 1, No 2 (2001)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (5022.747 KB) | DOI: 10.22146/ijc.21947

Abstract

The existence of the AuCl4- ion in the solution as the function of pH before performing the extraction of gold in the system of tetra N-butylammonium chloride (TBACI) -chloroform has been studied. The experimental data showed that AuCl4- ion was hydrolyzed at pH 5-10 and, an amorf dark-brown precipitate was appeared at pH 11-14. Amount of gold in the solution at pH 14 before extraction was around 70%. Study of the extraction has been carried out by investigating the influence of pH and TBACI concentration on the extraction efficiency. The experimental result indicated that TBACI was very efficient extractant for the extraction of gold from aqueous halide with the efficiency higher than 99%. The extraction of Gold in the TBACI-chloroform was effective at pH 0-4 with minimum concentration of TBACI 10-3 M, and the calculated Kex (extraction constant) was 5.07x10-4.
Preparation of Pt-Zeolite Catalyst for Conversion of n-Octanol I Made Sadiana; Iip Izul Falah; Triyono Triyono
Indonesian Journal of Chemistry Vol 1, No 2 (2001)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (7549.587 KB) | DOI: 10.22146/ijc.21949

Abstract

Pt-zeolite catalyst has been prepared by immersing a sample of zeolite in PtCl4 solution. After separation, the sample was dried and calcinated at 550 °C for 4 hours under nitrogen stream. Furthermore, the sample was oxidized with oxygen gas at 350 °C for 2 hours and reduced with hydrogen gas at 400 °C for 2 hours. Total amount of impregnated metal, acidity and surface are of the samples were determined by using atomic absorption spectrophotometric, gravimetric and gas sorption methods, respectively. The activity test was done in a fixed bed reactor and the results of the reaction were analyzed by using gas chromatograph. The result of the characterization showed that the higher total amount of impregnated metal, the lower the surface area and total volume of pores. The acidity and the catalyst activity increase with the increasing of the total amount of impregnated metal. The flow rate of feed and temperature reaction also influence yield conversion. The optimum yield of n-octanol conversion was obtained at 400 °C with the showest flow rate of n-octanol and flow rate of H2 gas was equal to 40 mL/minute.
Studies on Formation and Thermal Decomposition of Lead Hydride, PbH4 Narsito Narsito
Indonesian Journal of Chemistry Vol 1, No 2 (2001)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6429.473 KB) | DOI: 10.22146/ijc.21952

Abstract

In the present work, some fundamental aspects of the formation of gaseous lead hydride from aqueous solutions containing divalent lead ions (Pb2+) and its application in the atomic absorption spectrometric analysis lead has been investigated. By utilizing a peristaltic pump, an acidic solution of Pb2+ was first oxidized with ammonium peroxodisulphate, NH4S2O8, and followed by reduction with sodium tetrahydroborate, NaBH4. After a gas-liquid separation, the gaseous lead hydride produced was directly swept into an electrically heated open ended quartz tube, located at the light path of an atomic absorption spectrometer in order to have possibilities for specific atomic absorption spectroscopic measurements. The absorbance signals caused by lead atomic absorption could be used proportionally to estimate the density of atomic lead vapor produced in the thermal decomposition under investigation. Results showed that on-line pre-oxidation of the analyte is very important and crucial step in the gaseous hydride generation of lead, and no lead hydride was produced without the involvement of this step. Moreover, it was observed that the use of low major gas flows cannot be applied in quantitative atomic absorption spectrometric determination of lead by this technique. This condition may result in possible losses of the analyte atomic vapor due to metallic condensation.

Page 1 of 1 | Total Record : 9


Filter by Year

2001 2001


Filter By Issues
All Issue Vol 25, No 5 (2025) Vol 25, No 4 (2025) Vol 25, No 3 (2025) Vol 25, No 2 (2025) Vol 25, No 1 (2025) Vol 24, No 6 (2024) Vol 24, No 5 (2024) Vol 24, No 4 (2024) Vol 24, No 3 (2024) Vol 24, No 2 (2024) Vol 24, No 1 (2024) Vol 23, No 6 (2023) Vol 23, No 5 (2023) Vol 23, No 4 (2023) Vol 23, No 3 (2023) Vol 23, No 2 (2023) Vol 23, No 1 (2023) Vol 22, No 6 (2022) Vol 22, No 5 (2022) Vol 22, No 4 (2022) Vol 22, No 3 (2022) Vol 22, No 1 (2022) Vol 22, No 2 (2022) Vol 21, No 6 (2021) Vol 21, No 5 (2021) Vol 21, No 4 (2021) Vol 21, No 3 (2021) Vol 21, No 2 (2021) Vol 21, No 1 (2021) Vol 20, No 6 (2020) Vol 20, No 5 (2020) Vol 20, No 4 (2020) Vol 20, No 3 (2020) Vol 20, No 2 (2020) Vol 20, No 1 (2020) Vol 19, No 4 (2019) Vol 19, No 3 (2019) Vol 19, No 2 (2019) Vol 19, No 1 (2019) Vol 18, No 4 (2018) Vol 18, No 3 (2018) Vol 18, No 2 (2018) Vol 18, No 1 (2018) Vol 17, No 3 (2017) Vol 17, No 2 (2017) Vol 17, No 1 (2017) Vol 16, No 3 (2016) Vol 16, No 2 (2016) Vol 16, No 1 (2016) Vol 15, No 3 (2015) Vol 15, No 2 (2015) Vol 15, No 1 (2015) Vol 14, No 3 (2014) Vol 14, No 2 (2014) Vol 14, No 1 (2014) Vol 13, No 3 (2013) Vol 13, No 2 (2013) Vol 13, No 1 (2013) Vol 12, No 3 (2012) Vol 12, No 2 (2012) Vol 12, No 1 (2012) Vol 11, No 3 (2011) Vol 11, No 2 (2011) Vol 11, No 1 (2011) Vol 10, No 3 (2010) Vol 10, No 2 (2010) Vol 10, No 1 (2010) Vol 9, No 3 (2009) Vol 9, No 2 (2009) Vol 9, No 1 (2009) Vol 8, No 3 (2008) Vol 8, No 2 (2008) Vol 8, No 1 (2008) Vol 7, No 3 (2007) Vol 7, No 2 (2007) Vol 7, No 1 (2007) Vol 6, No 3 (2006) Vol 6, No 2 (2006) Vol 6, No 1 (2006) Vol 5, No 3 (2005) Vol 5, No 2 (2005) Vol 5, No 1 (2005) Vol 4, No 3 (2004) Vol 4, No 2 (2004) Vol 4, No 1 (2004) Vol 3, No 3 (2003) Vol 3, No 2 (2003) Vol 3, No 1 (2003) Vol 2, No 3 (2002) Vol 2, No 2 (2002) Vol 2, No 1 (2002) Vol 1, No 3 (2001) Vol 1, No 2 (2001) Vol 1, No 1 (2001) ARTICLE IN PRESS Article in press More Issue