cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta pusat,
Dki jakarta
INDONESIA
Jurnal Energi dan Lingkungan (Enerlink)
ISSN : 02169541     EISSN : -     DOI : -
Core Subject : Science,
Enerlink adalah jurnal yang diterbitkan 2 kali setahun oleh Pusat Teknologi Pengembangan Sumberdaya Energi dan Industri Kimia BPPT di bidang energi dan lingkungan. Enerlink is a scientific journal that publishes twice annually by Centre of Energy Technology and Chemical Industry of BPPT.
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol. 7 No. 1 (2011)" : 6 Documents clear
PENCEMARAN LINGKUNGAN PADA TUNGKU PEMBUATAN BRIKET KOKAS DAN PENGECORAN LOGAM SERTA PENCEMARAN LOGAM BERAT DI SENTRA INDUSTRI KECIL Hasnedi Hasnedi
Jurnal Energi dan Lingkungan (Enerlink) Vol. 7 No. 1 (2011)
Publisher : Badan Pengkajian dan Penerapan Teknologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/elk.v7i1.2726

Abstract

The coke production process by baking semi-coke briquette in a coke’s bakingoven will produce flue gas and smoke. The same also happens in its utilizationtest in metal foundry kiln known as “tungkik” (plunging) smelting kiln. The gasand smoke predictably contain heavy metals and polluted chemical compoundsthat will pollute the environment and disturbing the health of workers if theirconcentrations pass over defined standard quality level. The objective of thisstudy is to examine the amount of heavy metals and chemical compoundpollutants produced in the process of baking semi-coke to produce coke and inthe utilization of coke as fuel in tungkik kilns. Measurement results show thatheavy metals in the kiln’s chimneys and chambers such as As, Cd, Pb, and Hgcould not actually be detected, while Fe, Na, Al, Ca, and K could be easilydetected. The concentrations of such metals are in the range of: Na = 100-315µg/m3, Al = 215-360 µg/m3, Ca = 786-1330 µg/m3, Fe = 478-2300 µg/m3, and K = 0.25-0.5 µg/m3. Meanwhile pollutants from other chemical compounds in the flue gas are NO2 = 80.7785-83.3725 mg/m3 and SO2 = 10.85-10.98 mg/m3. Pollutantsfrom ambient air are NO2 = 179.11-236.49 µg/Nm3, SO2 = 112.56-256.52 µg/Nm3,CO = 43.80-100.98 µg/Nm3, HC = 0.05-0.64 µg/Nm3, and O3 = 2.8098-19.6065µg/Nm3. The total particle’s content is also low, which is about 0.283 mg/m3 in thecoke baking oven’s chimneys, 0.554 mg/m3 in the tungkik kiln’s chimneys and0.259 mg/m3 in the metal melting locations. Comparison of the measurementresults with that of quality standard defined by the government regulation of theRepublic of Indonesia No.41 Year 1999 about air pollution control, show that theresults is far below the tolerated level. Therefore, the existence of coke bakingoven is still feasible and safe to the environment.Kata kunci: briket kokas, pencemaran lingkungan, logam berat
UJI PENINGKATAN MUTU BATUBARA PERINGKAT RENDAH SUMATERA SELATAN Hartiniati Hartiniati
Jurnal Energi dan Lingkungan (Enerlink) Vol. 7 No. 1 (2011)
Publisher : Badan Pengkajian dan Penerapan Teknologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/elk.v7i1.2729

Abstract

A study of coal upgrading by way of evaporative method using coal from SouthSumatra is conducted. Preliminary inestigation on Upgrading of Brown Coal(UBC) process using Central and South Banko coals suggests that the processcan be applied to both coals (called S-BK and C-BK) without any operationalproblem. It produces high quality-stable coals in the briquette form with a calorificvalue of more than 6,500kcal/kg. Moreover, its spontaneous combustioncharacteristic is also suppressed comparing to that conventional drying method.This is due to the addition of aspal (heavy oil) in the solution of kerosene, wherethe aspal then soaked in the micropore of to prevent reabsorption of water whenput in the air.Kata Kunci: upgrading brown coal, Banko coal, briket batubara, spontaneouscombustion
RANCANGAN DASAR GASIFIER BATUBARA SIRKULASI UNGGUN MENGAMBANG UNTUK MEMBANGKITKAN LISTRIK 1 MW Soedjoko Tirtosoekotjo; Bambang Suwondo Rahardjo
Jurnal Energi dan Lingkungan (Enerlink) Vol. 7 No. 1 (2011)
Publisher : Badan Pengkajian dan Penerapan Teknologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/elk.v7i1.2730

Abstract

There are 3 choices in accommodating power station facility which have beeninstalled to fulfill standard regulation of environmental quality which progressivelytighten. Firstly, facility modification of pulverized–coal fired power plant byapplying a flue–gas desulfurisation technology throw away to cost moneyinstallation of tired which can 20% of total cost development of it. Secondly,modification system of coal fired power generation become natural gas combinedcycle (NGCC) can reach low emission, but fuel cost relatively high, so willinfluence the electricity generating cost. Third, modification system of electricgeneration which have been installed by utilizing a mechanism of coalgasification is most efficient and best alternative to yield an environmentalfriendly of electric generation combined cycle. In this paper, writer try to make abasic design of circulating fluidized–bed coal gasifier using clay catalist relatedon third choice which expected applicable in the next future to come replacepower station system which have ended a period as well as newly even if.Kata Kunci: gasifier batubara unggun mengambang, katalis tanah liat,pembangkit listrik
PENGEMBANGAN PROSES UPGRADING MINYAK BATUBARA: Pengaruh Temperatur, Tekanan dan Space Velocity Yusnitati Yusnitati; Muhammad Hanif; M Faizal
Jurnal Energi dan Lingkungan (Enerlink) Vol. 7 No. 1 (2011)
Publisher : Badan Pengkajian dan Penerapan Teknologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/elk.v7i1.2733

Abstract

Minyak batubara cair dengan titik didih 70-360oC, diperoleh dari proses pencairan batubara Tanito Harum menggunakan NEDOL Process skala pilot berkapasitas 150 ton/hari. Minyak batubara cair tersebut diupgrade untuk mengklarifikasi pengaruh temperatur reaksi, tekanan hidrogen, dan liquid hourly space velocity (LHSV) terhadap aktifitas hidrodenitrogenasi. Pengujian dilakukan dalam reactor fixed bed kontinyu berdiameter 8.5 mm menggunakan katalis Ni- W/Alumina pada temperatur 300-375oC, tekanan hidrogen 8-12 MPa, LHSV 0.75-3.0 hr-1 dan rasio hydrogen/oil 1000 NL/L. Hasil pengujian menunjukkan bahwa aktifitas hidrodenitrogenasi meningkat dengan peningkatan temperature reaksi dan tekanan hidrogen. Pada tekanan hidrogen 8 MPa, deaktifasi katalis terjadi lebih cepat dibandingkan dengan tekanan hydrogen 12 MPa selama 15 hari waktu operasi. Selain itu, ditunjukkan pula bahwa pada operasi dengan LHSV yang lebih rendah dan tekanan hidrogen yang lebih tinggi akan lebih efektif untuk menurunkan atau menghilangkan senyawa nitrogen dalam proses upgrading minyak batubara cair. Sehingga, operasi pada tekanan hidrogen 12 MPa diharapkan dapat menghasilkan produk minyak batubara cair dengan kandungan nitrogen yang rendah untuk waktu operasi lebih dari satu tahun pada skala komersial. Kata Kunci: hidrodenitrogenasi, katalis Ni-W/Alumina, minyak batubara cair, upgrading
STUDI PARAMETER KELAYAKAN USAHA PENCAIRAN BATUBARA DI INDONESIA Adhi Dharma Permana
Jurnal Energi dan Lingkungan (Enerlink) Vol. 7 No. 1 (2011)
Publisher : Badan Pengkajian dan Penerapan Teknologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/elk.v7i1.2734

Abstract

Coal liquefaction technology holds promise to provide synthetic liquid fuels as a substitute for conventional liquid fuels. For the purpose of application of a hig investment and advance technology, such as coal liquefaction technology, the competitiveness of its product need to be assessed before pursuing a commercial venture. The market of coal liquefaction technology is the oil fuels market of which its price is volatile. This paper proposes a techno-economical assessment of the Brown Coal Liquefaction tecnology through a base case calculation and a series of scenarios to perform sensitivity analysis of various parameters deemed crucial to its competitivenss. Kata Kunci: coal liquefaction, BCL, investment cost, sensitivity analysis, policy Strategy
GASIFIKASI SEKAM PADI (BIONER-1) Sjaffriadi Sjaffriadi; Budi Nurachman
Jurnal Energi dan Lingkungan (Enerlink) Vol. 7 No. 1 (2011)
Publisher : Badan Pengkajian dan Penerapan Teknologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/elk.v7i1.2735

Abstract

Indonesia has potential abudant biomass wastes. Annual paddy production in Indonesia is approximately 50 million tons, from which 14 tons of rice husks is produced, assuming that each ton paddy could produce 0.28 tons of rice husks. At its calorific value of 12.5 MJ/kg, the annual potential energy provided by these husks is around 175 GJ. A gasification system using rice husk would normally require 1.5 to 2 kg of rice husks to generate 1 kWh of electricity. Therefore, each ton of rice milled could produce wastes that equals to electricity generation of 150 kWh. Rice husk is about 14 to 28.5% of a rice grain, but mostly has an average value of 25%. A gasification Bioner-1 system is operated 14 hours per day in 366 days per year. This system will drive a rice milling unit for 8 hours per day and produce electricity for villagers for another 6 hours in the evening. At a fuel consumption of 25 kg per hour, the system will require 130 tons of husks that will be provided from rice fields of around 175 ha. Gas (syngas) produced from the gasification will be used for a dual fuel diesel engine system, supplementing diesel fuel. The diesel fuel substituted by the gas could reach about 75-80%. At a consumption rate of 25 kg/hour rice husks in the system, the husks consumption per kWh electricity is 1.5 kg (1.5 kg/kWh) and the efficiency of rice husks conversion is 15%. A small portion of tar could still escape from a gas cleaning system. The tar could be observed during overhoul of the diesel engine. The tar entering into the diesel engine is overcome through switching on the diesel engine for about 10 minutes and flushing using diesel oil right before it is shutted down. Through this method, the tar entering the diesel engine is completely burned. Kata kunci gasification, biomas, rice husk, diesel engine

Page 1 of 1 | Total Record : 6