cover
Contact Name
Heri Budi Wibowo
Contact Email
heribw@gmail.com
Phone
+6221-4892802
Journal Mail Official
jurnal.lapan@gmail.com
Editorial Address
Jl. Pemuda Persil No. 1 Rawamangun, Jakarta Timur 13220
Location
Kota adm. jakarta timur,
Dki jakarta
INDONESIA
Jurnal Teknologi Dirgantara
ISSN : 14128063     EISSN : 25977849     DOI : https://doi.org/10.30536
Jurnal Teknologi Dirgantara (Journal of Aerospace Technology) is an Indonesian accredited scientific publication that covers topics of Rocket, satellite, and aeronautics technology, as well as a spin-off from aerospace technology, such as aerodynamics, astronautics, aerospace structure, power and thermal system of satellites, flight controls. Propulsion and energetic technologies, such as propellant, rocket static-test, thermodynamics of propulsion system. Launch vehicle technology and space operations, such as satellite telecommunication systems, space payloads, and ground station technologies.
Articles 333 Documents
Implementation of Satellite Payload Program Reconfiguration on Low-Cost SDR Fadilah, Nurul; Pratomo, Bina; Muhtadin, Nurul; Soedjarwo, Moedji
Jurnal Teknologi Dirgantara Vol 20, No 2 (2022): Jurnal Teknologi Dirgantara
Publisher : National Institute of Aeronautics and Space - LAPAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.jtd.2022.v20.a3938

Abstract

A software-defined radio (SDR) is a radio communication system that uses reconfigurable software-based components for digital signal processing and conversion. These radio devices, in contrast to typical radio communication systems, are extremely adaptable and versatile. This technology has recently been implemented in CubeSat payloads for connecting the continuously expanding wireless world. SDR devices provide flexibility and versatility by allowing the payload configuration and application to be modified in orbit. This study presents the concept and implementation of an SDR ground simulator utilizing inexpensive hardware rather than a typical computer. The simulator runs on Raspberry Pi hardware with Linux OS and is written in the Phyton programming language. This work presents a model and algorithm of satellite software reconfiguration implemented in the SDR hardware ground simulator. The concept is simple and easy to implement and is potentially useful to be used in future satellite missions
Development of A 5.4 Ghz C-Band Microstrip SAR Antenna for A Tsunami Detector Chaniago, Erik; Haidi, Junas; Santosa, Hendy
Jurnal Teknologi Dirgantara Vol 20, No 2 (2022): Jurnal Teknologi Dirgantara
Publisher : National Institute of Aeronautics and Space - LAPAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.jtd.2022.v20.a3939

Abstract

A Tsunami is a series of massive oceanic waves resulting from profound tectonic activities in the seabed. The disaster's devastating effect makes fast information delivery during a tsunami crucial in minimizing losses. For this reason, Tsunami warning systems need to be supported by a rapid detection technology. In recent years, radar has been implemented as a tsunami detector due to its sensitivity to oceanic waves. An array antenna using advanced microstrip technology, as the main component of a radar system, can fulfill the requirement for tsunami rapid detection. This paper presents the work that we conducted to develop a tsunami detection antenna using the array approach to improve gain and optimize radiation patterns. We designed a patch antenna with 12 mm in length and 21 mm in width and performed some simulations to obtain the antenna parameters such as gain, bandwidth, and optimal radiation patterns. As the results of our investigation, we determined the resonance frequency to be 5.4 GHz. The study produced a gain of 9.07 dB through simulations on an antenna that resonates at a frequency that meets the antenna work criteria, which include a loss of -26.69 dB, a VSWR of 1.09, and an HPBW (Half Power Beamwith) of 17.3°. Those values indicate that the antenna designed for tsunami detector applications functions correctly.
Rocket Velocity Estimation for RX-450 Launches Using Image Processing Junjunan, Soleh Fajar; Nugroho, Yuniarto Wimbo; Jihad, Bagus Hayatul
Jurnal Teknologi Dirgantara Vol 20, No 2 (2022): Jurnal Teknologi Dirgantara
Publisher : National Institute of Aeronautics and Space - LAPAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.jtd.2022.v20.a3935

Abstract

The RX-450 rocket, developed by the Rocket Technology Center BRIN, serves various purposes, from sounding to military applications. This study focuses on estimating rocket velocity during the launch phase. Using MATLAB for image processing and OpenRocket for simulation, we explore the potential of image processing for velocity estimation, providing a cost-effective alternative. Results show velocity estimations trailing those of OpenRocket, attributed to friction force and setup differences. The study emphasizes the importance of camera positioning for accuracy. Despite differences, image processing shows promise, warranting further refinement