cover
Contact Name
Amin Fatoni
Contact Email
aminfatoni@unsoed.ac.id
Phone
-
Journal Mail Official
j.molekul@gmail.com
Editorial Address
Jl. Dr. Soeparno No.61 Karangwangkal, Purwokerto, Jawa Tengah 53
Location
Kab. banyumas,
Jawa tengah
INDONESIA
Molekul: Jurnal Ilmiah Kimia
ISSN : 19079761     EISSN : 25030310     DOI : -
MOLEKUL is a peer-reviewed journal of chemistry published by the Department of Chemistry, Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Indonesia. Publishing frequency 2 issues per year, on May and November. This Journal encompasses all branches of chemistry and its sub-disciplines including Pharmaceutical, Biological activities of Synthetic Drugs, Environmental Chemistry, Biochemistry, Polymer Chemistry, Petroleum Chemistry, and Agricultural Chemistry.
Arjuna Subject : -
Articles 12 Documents
Search results for , issue "Vol 12, No 2 (2017)" : 12 Documents clear
Enhancing Remazol Yellow FG Decolorination by Adsorption and Photoelectrocatalytic Degradation Sayekti Wahyuningsih; Puji Estiningsih; Velina Anjani; Liya N.M.Z. Saputri; Candra Purnawan; Edi Pramono
Molekul Vol 12, No 2 (2017)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (358.264 KB) | DOI: 10.20884/1.jm.2017.12.2.321

Abstract

The combination of adsorption and photoelectrocatalytic degradation system for Remazol Yellow FG decolorization has been studied. The adsorption of Remazol Yellow FG was carried out using alumina and silica, which was activated using H2SO4 1 M and NaOH 1 M. The adsorption results at optimum pH were then used for photoelectrocatalytic process. Photoelectrocatalytic degradation cell was built by electrode Ti/TiO2 as a cathode and Ti/TiO2-PbO as an anode. Material characterizations were performed by UV-Vis Spectrophotometers, X-Ray Diffraction (XRD), and Fourier Transform Infra-Red (FTIR). Activation of the adsorbent can increase Remazol Yellow FG adsorption on alumina base and silica acid that were reached 99.500% and 81.631%, respectively. The optimum condition of Remazol Yellow FG 6 adsorption by alumina acid was at pH 3, alumina base were at pH 4 and pH 5, and silica base were at pH 6 and pH 10. Degradation of Remazol Yellow FG using TiO2-PbO electrode was 72.756% at potential cells of 7.5 Volts for 10 minutes. The combination of adsorption and photoelectrocatalytic degradation can decrease the concentration of Remazol Yellow FG achieved 99.705%
Degradation of Paraquat in Gramoxone Pesticide with Addition of ZnO Febrina Arfi; Safni Safni; Zaimi Abdullah
Molekul Vol 12, No 2 (2017)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (385.702 KB) | DOI: 10.20884/1.jm.2017.12.2.326

Abstract

Paraquat is the most toxic herbicide, the main agricultural crops and plantations that use them are cloves, cocoa, oil palm, rubber, coffee, and pepper. Therefore, it is necessary to study to degrade paraquat compounds by photolysis method with using ZnO. Photolysis is a process of UV irradiation with a wavelength of 200-400 nm. In this study Photolysis method used UV light with λ = 365 nm. Degradation of paraquat compound was done with the influence of variation of time without the addition ZnO, the influence of ZnO additional variations, and the effect of combination between variations of time and optimization of ZnO addition. The result of the study shows that photolysis degradation product without the addition of ZnO for 120 minutes has been degraded by 12.56%. While the optimum addition of 0.1 grams ZnO increased the percentage of degradation which is about 57.64%. This is proved that the addition of ZnO with photolysis method can degrade more paraquat compounds.

Page 2 of 2 | Total Record : 12