International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles
115 Documents
Search results for
, issue
"Vol 10, No 3: June 2020"
:
115 Documents
clear
Enhancing DSSC conversion efficiency by ozone-treated TiO2 photoanode and optimum CNT/PDDA counter electrode
Yoshiki Kurokawa;
Dang Trang Nguyen;
Ryota Fujimoto;
Kozo Taguchi
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (529.488 KB)
|
DOI: 10.11591/ijece.v10i3.pp2926-2933
The conversion efficiency of dye-sensitized solar cells (DSSCs) depends on the performance of the photoanode and the counter electrode. In this paper, UV-ozone treatment has been applied to the photoanode to clean and increase the hydrophilicity of the photoanode. As a result, the dye adsorption capacity was improved. Also, low-cost multiwalled carbon nanotube (CNT) combined with poly (diallyl dimethylammonium chloride) (PDDA) was used to fabricate the counter electrode. The CNT/PDDA counter electrode was optimized to maximize its performance. By using the ozone-treated photoanode and optimum CNT/PDDA counter electrode, the conversion efficiency has increased by about 64%.
Feasibility analysis of an off-grid photovoltaic-battery energy system for a farm facility
Damilola Elizabeth Babatunde;
Olubayo Moses Babatunde;
Micheal Uzoamaka Emezirinwune;
Iheanacho Henry Denwigwe;
Taiwo Emmanuel Okharedia;
Oladele Julius Omodara
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1000.555 KB)
|
DOI: 10.11591/ijece.v10i3.pp2874-2883
Renewable energy plays a very important role in the improvement and promotion of environmental sustainability in agricultural-related activities. This paper evaluates the techno-economic and environmental benefits of deploying photovoltaic (PV)- battery systems in a livestock farmhouse. For the energy requirements of the farm to be determined, a walkthrough energy audit is conducted on the farmhouse. The farm selected for this study is located in southern Nigeria. The National Renewable Energy Laboratory’s Hybrid Optimization Modeling for Electric Renewable (HOMER) software was adapted for the purpose of the techno-economic analysis. It is found that a standalone PV/battery-powered system in farmhouse applications has higher economic viability when compared to its diesel-powered counterparts in terms of total net present cost (TNPC). A saving of 48% is achievable over the TNPC and Cost of Energy with zero emissions. The results obtained show the numerous benefits of replacing diesel generators with renewable energy sources such as PV-battery systems in farming applications.
LSTM deep learning method for network intrusion detection system
Alaeddine Boukhalfa;
Abderrahim Abdellaoui;
Nabil Hmina;
Habiba Chaoui
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (822.858 KB)
|
DOI: 10.11591/ijece.v10i3.pp3315-3322
The security of the network has become a primary concern for organizations. Attackers use different means to disrupt services or steal information, these various attacks push to think of a new way to block them all in one manner. In addition, these intrusions can change and penetrate the devices of security. To solve these issues, we suggest, in this paper, a new idea for Network Intrusion Detection System (NIDS) based on Long Short-TermMemory (LSTM) to recognize menaces and to obtain a long-term memory on them, inorder to stop the new attacks that are like the existing ones, and at the sametime, to have a single mean to block intrusions. According to the results of the experiments of detections that we have carried out, the Accuracy reaches upto 99.98 % and 99.93 % for respectively the classification of two classes and several classes, Also the False Positive Rate (FPR) reaches up to only 0,068 % and 0,023 % for respectively the classification of two classes and several classes, which proves that the proposed model is very effective, it has a great ability to memorize and differentiate between normal traffic and attack traffic and its identification is more accurate than other Machine Learning classifiers.
Inter-connected coupled lines Resonator topology for bandpass filter application
Mohd Nasiruddin Hushim;
Norfishah Ab Wahab;
Tn. Syarifah Atifah Tn. Mat Zin;
Norlia Ghazali
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (927.039 KB)
|
DOI: 10.11591/ijece.v10i3.pp2523-2534
This paper presents an inter-connected side-shorted coupled-line resonator topology as a base cell. The base cell is built from two single-shorted quarter-wavelength coupled-line sections, connected in series to give a half-wavelength coupled-line that creates a single resonance of bandpass filter response. Higher-order bandpass filter is produced by adding new single-shorted coupled-line sections, cascaded in an inter-connected manner to the base cell. This new topology creates a unique arrangement that caused cross coupling effects between the resonators, resulting to the occurrence of transmission zeros that lead to the improvement of selectivity of the higher order bandpass filter response. For validation of concept, 2nd and 3rd order bandpass filters were fabricated using microstrip technology on Roger 3210 substrate with parameter of Ɛr = 10.2, h = 1.27 mm and tan δ = 3x10-3. The filters were measured and the results show good agreement with simulation results.
Analysis of fuzzy logic controller based bi-directional DC-DC converter for battery energy management in hybrid solar/wind micro grid system
M. Nagaiah;
K. Chandra Sekhar
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1047.578 KB)
|
DOI: 10.11591/ijece.v10i3.pp2271-2284
This paper proposes a fuzzy logic-based battery energy management system in hybrid renewable system. The novel topology consists of solar and wind energy system-based input sources and a battery bank to store the energy when in excess. The PV-Wind source is equipped with unidirectional boost converter whereas, the battery storage system is connected to the system with a bi-directional DC/DC converter. The main novelty of this research is the fuzzy logic-based battery management system which charges and discharges into the DC bus system based on the supply-load demand. The fuzzy logic controller (FLC) based maximum power point tracking (MPPT) is used in the PV and wind energy conversion system (WECS) to track the maximum available power for the different irradiance and wind velocity respectively. The obtained results are compared to conventional P&O MPPT control algorithm to find the effectiveness of the system. A 500 W PV system and a 500 W Permanent magnet synchronous generator (PMSG) based WECS is implemented for its simplicity and high efficiency. The proposed control topology is designed and tested using MATLAB/Simulink
Optimised control using proportional-integral-derivative controller tuned using internal model control
B. Mabu Sarif;
D. V. Ashok kumar;
M. Venu Gopala Rao
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (665.945 KB)
|
DOI: 10.11591/ijece.v10i3.pp2452-2462
Time delays are generally unavoidable in the designing frameworks for mechanical and electrical systems and so on.. In both continuous and discrete schemes, the existence of delay creates undesirable impacts on the under-thought which forces exacting constraints on attainable execution.The presence of delay confounds the design structure procedure also. It makes continuous systems boundless dimensional and also extends the readings in discrete systems fundamentally. As the Proportional-Integral-Derivative (PID) controller based on internal model control is essential and strong to address the vulnerabilities and aggravations of the model. But for an real industry process, they are less susceptible to noise than the PID controller.It results in just one tuning parameter which is the time constant of the closed-loop system λ, the internal model control filter factor.It additionally gives a decent answer for the procedure with huge time delays. The design of the PID controller based on the internal model control, with approximation of time delay using Pade’ and Taylor’s series is depicted in this paper. The first order filter used in the design provides good set-point tracking along with disturbance rejection.
Systematic literature survey: applications of LoRa communication
Lone Godfrey Future Kolobe;
Caspar K. Lebekwe;
Boyce Sigweni
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (170.683 KB)
|
DOI: 10.11591/ijece.v10i3.pp3176-3183
LoRa is a communication scheme that is part of the low power wide are network (LPWAN) technology using ISM bands. It has seen extensive documentation and use in research and industry due to its long coverage ranges of up-to 20Km or more with less than 14dB transmit power. Moreover, some applications report theoretical battery lives of upto 10years for field deployed modules utilising the scheme in WSN applications. Additionally, the scheme is very resilient to losses from noise, as well bursts of interference through its FEC. Our objective is to systematically review the empirical evidence of the use-cases of LoRa in rural landscapes, metrics and the relevant validation schemes. In addition the research is evaluated based on (i) mathematical function of the scheme (bandwidth use, spreading factor, symbol rate, chip rate and nominal bit rate) (ii) use-cases (iii) test-beds, metrics of evaluation and (iv) validation methods. A systematic literature review of published, refereed primary studies on LoRa applications was conducted. Using articles from 2010-2019. We identified 21 relevant primary studies. These reported a range of different assessments of LoRa. 10 out of 21 reported on novel use cases. As an actionable conclusion, the authors conclude that more work is needed in terms of field testing, as no articles could be found on performance/deployment in Botswana or South Africa despite the existence of LoRa networks in both countries. Thus researchers in the region can research propagation models performance, energy efficiency of the scheme and MAC layer as well as the channel access challenges for the region.
Decomposition of color wavelet with higher order statistical texture and convolutional neural network features set based classification of colorectal polyps from video endoscopy
A. S. M. Shafi;
Mohammad Motiur Rahman
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (3586.646 KB)
|
DOI: 10.11591/ijece.v10i3.pp2986-2996
Gastrointestinal cancer is one of the leading causes of death across the world. The gastrointestinal polyps are considered as the precursors of developing this malignant cancer. In order to condense the probability of cancer, early detection and removal of colorectal polyps can be cogitated. The most used diagnostic modality for colorectal polyps is video endoscopy. But the accuracy of diagnosis mostly depends on doctors' experience that is crucial to detect polyps in many cases. Computer-aided polyp detection is promising to reduce the miss detection rate of the polyp and thus improve the accuracy of diagnosis results. The proposed method first detects polyp and non-polyp then illustrates an automatic polyp classification technique from endoscopic video through color wavelet with higher-order statistical texture feature and Convolutional Neural Network (CNN). Gray Level Run Length Matrix (GLRLM) is used for higher-order statistical texture features of different directions (Ɵ = 0o, 45o, 90o, 135o). The features are fed into a linear support vector machine (SVM) to train the classifier. The experimental result demonstrates that the proposed approach is auspicious and operative with residual network architecture, which triumphs the best performance of accuracy, sensitivity, and specificity of 98.83%, 97.87%, and 99.13% respectively for classification of colorectal polyps on standard public endoscopic video databases.
A review of optimal operation of microgrids
N. Karthik;
A. K. Parvathy;
R. Arul
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (216.885 KB)
|
DOI: 10.11591/ijece.v10i3.pp2842-2849
The term microgrid refers to small-scale power grid that can operate autonomously or in concurrence with the area’s main electrical grid. The intermittent characteristic of DGs which defies the power quality and voltage manifests the requirement for new planning and operation approaches for microgrids. Consequently, conventional optimization methods in new power systems have been critically biased all through the previous decade. One of the main technological and inexpensive tools in this regard is the optimal generation scheduling of microgrid. As a primary optimization tool in the planning and operation fields, optimal operation has an undeniable part in the power system. This paper reviews and evaluates the optimal operation approaches mostly related to microgrids. In this work, the foremost optimal generation scheduling approaches are compared in terms of their objective functions, techniques and constraints. To conclude, a few fundamental challenges occurring from the latest optimal generation scheduling techniques in microgrids are addressed.
Improved strategy of an MPPT based on the sliding mode control for a PV system
Taouni Abderrahim;
Touati Abdelwahed;
Majdoul Radouane
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1591.783 KB)
|
DOI: 10.11591/ijece.v10i3.pp3074-3085
The energy produced using a photovoltaic (PV) is mainly dependent on weather factors such as temperature and solar radiation. Given the high cost and low yield of a PV system, it must operate at maximum power point (MPP), which varies according to changes in load and weather conditions. This contribution presents an improved maximum power point tracking (MPPT) controllers of a PV system in various climatic conditions. The first is a sliding mode MPPT that designed to be applied to a buck converter in order to achieve an optimal PV array output voltage. The second MPPT is based on the incremental conductance algorithm or Perturb-and-Observe algorithm. It provides the output reference PV voltage to the sliding mode controller acting on the duty cycle of the DC-DC converter. Simulation is carried out in SimPower toolbox of Matlab/Simulink. Simulation results confirm the effectiveness of the sliding mode control MPPT under the parameter variation environments and shown that the controllers meet its objectives.