cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 116 Documents
Search results for , issue "Vol 10, No 6: December 2020" : 116 Documents clear
Implementation of a grid-tied emergency back-up power supply for medium and low power application Dhiman Chowdhury; Mohammad Sharif Miah; Md. Feroz Hossain; Uzzal Sarker
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v10i6.pp6233-6243

Abstract

Emergency back-up power supply units are necessary in case of grid power shortage, considerably poor regulation and costly establishment of a power system facility. In this regard, power electronic converters based systems emerge as consistent, = properly controlled and inexpensive electrical energy providers. This paper presents an implemented design of a grid-tied emergency back-up power supply for medium and low power applications. There are a rectifier-link boost derived DC-DC battery charging circuit and a 4-switch push-pull power inverter (DC-AC) circuit, which are controlled by pulse width modulation (PWM) signals. A changeover relay based transfer switch controls the power flow towards the utility loads. During off-grid situations, loads are fed power by the proposed system and during on-grid situations, battery is charged by an AC-link rectifier-fed boost converter. Charging phenomenon of the battery is controlled by a relay switched protection circuit. Laboratory experiments are carried out extensively for different loads. Power quality assessments along with back-up durations are recorded and analyzed. In addition, a cost allocation affirms the economic feasibility of the proposed framework in case of reasonable consumer applications. The test-bed results corroborate the reliability of the research work.
An effective RGB color selection for complex 3D object structure in scene graph systems Chung Le Van; Gia Nhu Nguyen; Tri Huu Nguyen; Tung Sanh Nguyen; Dac-Nhuong Le
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2047.254 KB) | DOI: 10.11591/ijece.v10i6.pp5951-5964

Abstract

The goal of this project is to develop a complete, fully detailed 3D interactive model of the human body and systems in the human body, and allow the user to interacts in 3D with all the elements of that system, to teach students about human anatomy. Some organs, which contain a lot of details about a particular anatomy, need to be accurately and fully described in minute detail, such as the brain, lungs, liver and heart. These organs are need have all the detailed descriptions of the medical information needed to learn how to do surgery on them, and should allow the user to add careful and precise marking to indicate the operative landmarks on the surgery location. Adding so many different items of information is challenging when the area to which the information needs to be attached is very detailed and overlaps with all kinds of other medical information related to the area. Existing methods to tag areas was not allowing us sufficient locations to attach the information to. Our solution combines a variety of tagging methods, which use the marking method by selecting the RGB color area that is drawn in the texture, on the complex 3D object structure. Then, it relies on those RGB color codes to tag IDs and create relational tables that store the related information about the specific areas of the anatomy. With this method of marking, it is possible to use the entire set of color values (R, G, B) to identify a set of anatomic regions, and this also makes it possible to define multiple overlapping regions.
Short-term wind speed forecasting system using deep learning for wind turbine applications Gokhan Erdemir; Aydin Tarik Zengin; Tahir Cetin Akinci
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (506.228 KB) | DOI: 10.11591/ijece.v10i6.pp5779-5784

Abstract

It is very important to accurately detect wind direction and speed for wind energy that is one of the essential sustainable energy sources. Studies on the wind speed forecasting are generally carried out for long-term predictions. One of the main reasons for the long-term forecasts is the correct planning of the area where the wind turbine will be built due to the high investment costs and long-term returns. Besides that, short-term forecasting is another important point for the efficient use of wind turbines. In addition to estimating only average values, making instant and dynamic short-term forecasts are necessary to control wind turbines. In this study, short-term forecasting of the changes in wind speed between 1-20 minutes using deep learning was performed. Wind speed data was obtained instantaneously from the feedback of the emulated wind turbine's generator. These dynamically changing data was used as an input of the deep learning algorithm. Each new data from the generator was used as both test and training input in the proposed approach. In this way, the model accuracy and enhancement were provided simultaneously. The proposed approach was turned into a modular independent integrated system to work in various wind turbine applications. It was observed that the system can predict wind speed dynamically with around 3% error in the applications in the test setup applications.
Q-Learning vertical handover scheme in two-tier LTE-A networks Ammar Bathich; Mohd Asri Mansor; Saiful Izwan Suliman; Sinan Ghassan Abid Ali
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (73.951 KB) | DOI: 10.11591/ijece.v10i6.pp5824-5831

Abstract

Global mobile communication necessitates improved capacity and proper quality assurance for services. To achieve these requirements, small cells have been deployed intensively by long term evolution (LTE) networks operators beside conventional base station structure to provide customers with better service and capacity coverage. Accomplishment of seamless handover between Macrocell layer (first tier) and Femtocell layer (second tier) is one of the key challenges to attain the QoS requirements. Handover related information gathering becomes very hard in high dense femtocell networks, effective handover decision techniques are important to minimize unnecessary handovers occurred and avoid Ping-Pong effect. In this work, we proposed and implemented an efficient handover decision procedure based on users’ profiles using Q-learning technique in an LTE-A macrocell-femtocell networks. New multi-criterion handover decision parameters are proposed in typical/dense femtocells in microcells environment to estimate the target cell for handover. The proposed handover algorithms are validated using the LTE-Sim simulator under an urban environment. The simulation results showed noteworthy reduction in the average number of handovers.
A Haptic feedback system based on leap motion controller for prosthetic hand application Hussam K. Abdul-Ameer; Luma Issa Abdul-Kreem; Huda Adnan; Zahra Sami
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (560.586 KB) | DOI: 10.11591/ijece.v10i6.pp5772-5778

Abstract

Leap Motion Controller (LMC) is a gesture sensor consists of three infrared light emitters and two infrared stereo cameras as tracking sensors. LMC translates hand movements into graphical data that are used in a variety of applications such as virtual/augmented reality and object movements control. In this work, we intend to control the movements of a prosthetic hand via (LMC) in which fingers are flexed or extended in response to hand movements. This will be carried out by passing in the data from the Leap Motion to a processing unit that processes the raw data by an open-source package (Processing i3) in order to control five servo motors using a micro-controller board. In addition, haptic setup is proposed using force sensors (FSR) and vibro-motors in which the speed of these motors is proportional to the amount of the grasp force exerted by the prosthetic hand. Investigation for optimal placement of the FSRs on a prosthetic hand to obtain convenient haptic feedback has been carried out. The results show the effect of object shape and weight on the obtained response of the FSR and how they influence the locations of the sensors.
Medical vision: web and mobile medical image retrieval system based on google cloud vision I Ketut Gede Darma Putra; Dewa Made Sri Asra; I Gusti Ngurah Dwiva Hardijaya; I Gede Galang Surya Prabawa; I Made Aris Satia Widiatmika
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2037.695 KB) | DOI: 10.11591/ijece.v10i6.pp5974-5984

Abstract

The application of information technology is rapidly utilized in the medical system. There is also a massive development in the automatic method for recognizing and detecting objects in the real world. In this study, we present a system called Medical Vision which is designed for people who has no expertise in medical. Medical Vision is a web and mobile-based application to give an initial knowledge in a medical image. This system has 5 features; object detection, web detection, object labeling, safe search, and image properties. These features are run by embedding Google Vision API in the system. We evaluate this system by observing the result of some medical images which inputted into the system. The results showed that our system presents a promising performance and able to give relevant information related to the given image.
Multilingual twitter sentiment analysis using machine learning K. Arun; A. Srinagesh
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (781.211 KB) | DOI: 10.11591/ijece.v10i6.pp5992-6000

Abstract

Twitter sentiment analysis is one of the leading research fields. Most of the researchers were contributed to twitter sentiment analysis in English tweets, but few researchers focus on the multilingual twitter sentiment analysis. Some challenges are hoping for the research solutions in multilingual twitter sentiment analysis. This study presents the implementation of sentiment analysis in multilingual twitter data and improves the data classification up to the adequate level of accuracy. Twitter is the sixth leading social networking site in the world. Active users for twitter in a month are 330 million. People can tweet or re-tweet in their languages and allow users to use emoji’s, abbreviations, contraction words, miss spellings, and shortcut words. The best platform for sentiment analysis is twitter. Multilingual tweets and data sparsity are the two main challenges. In this paper, the MLTSA algorithm gives the solution for these two challenges. MLTSA algorithm divides into two parts. One is detecting and translating non-English tweets into English using natural language processing (NLP). And the second one is an appropriate pre-processing method with NLP support can reduce the data sparsity. The result of the MLTSA with SVM achieves good accuracy by up to 95%.
An efficient method to classify GI tract images from WCE using visual words R. Ponnusamy; S. Sathiamoorthy; R. Visalakshi
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (549.505 KB) | DOI: 10.11591/ijece.v10i6.pp5678-5686

Abstract

The digital images made with the Wireless Capsule Endoscopy (WCE) from the patient's gastrointestinal tract are used to forecast abnormalities. The big amount of information from WCE pictures could take 2 hours to review GI tract illnesses per patient to research the digestive system and evaluate them. It is highly time consuming and increases healthcare costs considerably. In order to overcome this problem, the CS-LBP (Center Symmetric Local Binary Pattern) and the ACC (Auto Color Correlogram) were proposed to use a novel method based on a visual bag of features (VBOF). In order to solve this issue, we suggested a Visual Bag of Features(VBOF) method by incorporating Scale Invariant Feature Transform (SIFT), Center-Symmetric Local Binary Pattern (CS-LBP) and Auto Color Correlogram (ACC). This combination of features is able to detect the interest point, texture and color information in an image. Features for each image are calculated to create a descriptor with a large dimension. The proposed feature descriptors are clustered by K- means referred to as visual words, and the Support Vector Machine (SVM) method is used to automatically classify multiple disease abnormalities from the GI tract. Finally, post-processing scheme is applied to deal with final classification results i.e. validated the performance of multi-abnormal disease frame detection.
Energy efficient routing in wireless sensor network based on mobile sink guided by stochastic hill climbing Mr. Raghavendra Y. M.; Dr. U. B. Mahadevaswamy
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (674.703 KB) | DOI: 10.11591/ijece.v10i6.pp5965-5973

Abstract

In Wireless Sensor Networks (WSNs), the reduction of energy consumption in the batteries of a sensor node is an important task. Sensor nodes of WSNs perform three significant functions such as data sensing, data transmitting and data relaying. Routing technique is one of the methods to enhance the sensor nodes battery lifetime. Energy optimization is done by using one of the heuristic routing methods for sensing and transmitting the data. To enhance the energy optimization mainly concentrated on data relaying. In this work stochastic hill climbing is adapted. The proposed solution for data relaying utilizes geographical routing and mobile sink technique. The sink collects the data from cluster heads and movement of the sink is routed by stochastic hill climbing. Network simulator 2 is used for experimentation purpose. This work also compares with the existing routing protocols like Energy-efficient Low Duty Cycle (ELDC), Threshold sensitive Energy Efficient sensor Network (TEEN) and Adaptive clustering protocol. The proposed work shows promising results with respect to lifetime, average energy of nodes and packet delivery ratio.
An analysis of software aging in cloud environment Shruthi P.; Nagaraj G. Cholli
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (576.048 KB) | DOI: 10.11591/ijece.v10i6.pp5985-5991

Abstract

Cloud Computing is the environment in which several virtual machines (VM) run concurrently on physical machines. The cloud computing infrastructure hosts multiple cloud service segments that communicate with each other using the interfaces. This creates distributed computing environment. During operation, the software systems accumulate errors or garbage that leads to system failure and other hazardous consequences. This status is called software aging. Software aging happens because of memory fragmentation, resource consumption in large scale and accumulation of numerical error. Software aging degrads the performance that may result in system failure. This happens because of premature resource exhaustion. This issue cannot be determined during software testing phase because of the dynamic nature of operation. The errors that cause software aging are of special types. These errors do not disturb the software functionality but target the response time and its environment. This issue is to be resolved only during run time as it occurs because of the dynamic nature of the problem. To alleviate the impact of software aging, software rejuvenation technique is being used. Rejuvenation process reboots the system or re-initiates the softwares. This avoids faults or failure. Software rejuvenation removes accumulated error conditions, frees up deadlocks and defragments operating system resources like memory. Hence, it avoids future failures of system that may happen due to software aging. As service availability is crucial, software rejuvenation is to be carried out at defined schedules without disrupting the service. The presence of Software rejuvenation techniques can make software systems more trustworthy. Software designers are using this concept to improve the quality and reliability of the software. Software aging and rejuvenation has generated a lot of research interest in recent years. This work reviews some of the research works related to detection of software aging and identifies research gaps.

Page 1 of 12 | Total Record : 116


Filter by Year

2020 2020


Filter By Issues
All Issue Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue