International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles
110 Documents
Search results for
, issue
"Vol 12, No 1: February 2022"
:
110 Documents
clear
The impact of channel fin width on electrical characteristics of Si-FinFET
Yousif Atalla;
Yasir Hashim;
Abdul Nasir Abd. Ghafar
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp201-207
This paper studies the impact of fin width of channel on temperature and electrical characteristics of fin field-effect transistor (FinFET). The simulation tool multi-gate field effect transistor (MuGFET) has been used to examine the FinFET characteristics. Transfer characteristics with various temperatures and channel fin width (WF=5, 10, 20, 40, and 80 nm) are at first simulated in this study. The results show that the increasing of environmental temperature tends to increase threshold voltage, while the subthreshold swing (SS) and drain-induced barrier lowering (DIBL) rise with rising working temperature. Also, the threshold voltage decreases with increasing channel fin width of transistor, while the SS and DIBL increase with increasing channel fin width of transistor, at minimum channel fin width, the SS is very near to the best and ideal then its value grows and going far from the ideal value with increasing channel fin width. So, according to these conditions, the minimum value as possible of fin width is the preferable one for FinFET with better electrical characteristics.
Design and development of multiphase buck converters for voltage regulator modules
Mini Puthenpurakkal Varghese;
Ashwathnarayana Manjunatha;
Thazhathu Veedu Snehaprabha
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp239-249
Modern microprocessors in high-power applications require a low input voltage and a high input current, necessitating the use of multiphase buck converters. As per microprocessor computing complexity, the power requirements of the switching converter will also be more important and will be increasing as per load demand. Previous studies introduced some methods to achieve the advantages associated with multiphase regulators. This paper presents an effective closed closed-loop control scheme for multiphase buck converters that reduces ripple and improves transient response. It is suitable for applications that require regulated output voltage with effectively reduced ripple. The analysis began with a simulation of the entire design using the OrCAD tool, followed by the construction of a hardware setup. Experiments on a 200 Khz, 9 V, 12 A, 2-phase buck voltage regulator were conducted and the proposed experiment found to be useful.
Convergence analysis of the triangular-based power flow method for AC distribution grids
Maria Camila Herrera;
Oscar Danilo Montoya;
Alexander Molina-Cabrera;
Luis Fernando Grisales-Noreña;
Diego Armando Giral-Ramirez
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp41-49
This paper addresses the convergence analysis of the triangular-based power flow (PF) method in alternating current radial distribution networks. The PF formulation is made via upper-triangular matrices, which enables finding a general iterative PF formula that does not require admittance matrix calculations. The convergence analysis of this iterative formula is carried out by applying the Banach fixed-point theorem (BFPT), which allows demonstrating that under an adequate voltage profile the triangular-based PF always converges. Numerical validations are made, on the well-known 33 and 69 distribution networks test systems. Gauss-seidel, newton-raphson, and backward/forward PF methods are considered for the sake of comparison. All the simulations are carried out in MATLAB software.
Develop algorithms to determine the status of car drivers using built-in accelerometer and GBDT
Thi Thu Nguyen;
Phuc Thinh Doan;
Anh-Ngoc Le;
Kolla Bhanu Prakash;
Subrata Chowdhury;
Duc-Nghia Tran;
Duc-Tan Tran
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp785-792
In this paper, we introduce a mobile application called CarSafe, in which data from the acceleration sensor integrated on smartphones is exploited to come up with an efficient classification algorithm. Two statuses, "Driving" or "Not driving," are monitored in the real-time manner. It enables automatic actions to help the driver safer. Also, from these data, our software can detect the crash situation. The software will then automatically send messages with the user's location to their emergency departments for timely assistance. The application will also issue the same alert if it detects a driver of a vehicle driving too long. The algorithm's quality is assessed through an average accuracy of 96.5%, which is better than the previous work (i.e., 93%).
Building Quranic stories ontology using MappingMaster domain-specific language
Rusul Yousif Alsalhee;
Abdulhussein Mohsin Abdullah
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp684-693
The Holy Quran, due to it is full of many inspiring stories and multiple lessons that need to understand it requires additional attention when it comes to searching issues and information retrieval. Many works were carried out in the Holy Quran field, but some of these dealt with a part of the Quran or covered it in general, and some of them did not support semantic research techniques and the possibility of understanding the Quranic knowledge by the people and computers. As for others, techniques of data analysis, processing, and ontology were adopted, which led to directed these to linguistic aspects more than semantic. Another weakness in the previous works, they have adopted the method manually entering ontology, which is costly and time-consuming. In this paper, we constructed the ontology of Quranic stories. This ontology depended in its construction on the MappingMaster domain-specific language (MappingMaster DSL)technology, through which concepts and individuals can be created and linked automatically to the ontology from Excel sheets. The conceptual structure was built using the object role modeling (ORM) modeling language. SPARQL query language used to test and evaluate the propsed ontology by asking many competency questions and as a result, the ontology answered all these questions well.
Implementation of a personalized food recommendation system based on collaborative filtering and knapsack method
Nattaporn Thongsri;
Pattaraporn Warintarawej;
Santi Chotkaew;
Wanida Saetang
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp630-638
Food recommendation system is one of the most interesting recommendation problems since it provides data for decision-making to users on selection of foods that meets individual preference of each user. Personalized recommender system has been used to recommend foods or menus to respond to requirements and restrictions of each user in a better way. This research study aimed to develop a personalized healthy food recommendation system based on collaborative filtering and knapsack method. Assessment results found that users were satisfied with the personalized healthy food recommendation system based on collaborative filtering and knapsack problem algorithm which included ability of operating system, screen design, and efficiency of operating system. The average satisfaction score overall was 4.20 implying that users had an excellent level of satisfaction.
Comparative study between metaheuristic algorithms for internet of things wireless nodes localization
Rana Jassim Mohammed;
Enas Abbas Abed;
Mostafa Mahmoud El-gayar
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp660-668
Wireless networks are currently used in a wide range of healthcare, military, or environmental applications. Wireless networks contain many nodes and sensors that have many limitations, including limited power, limited processing, and narrow range. Therefore, determining the coordinates of the location of a node of the unknown location at a low cost and a limited treatment is one of the most important challenges facing this field. There are many meta-heuristic algorithms that help in identifying unknown nodes for some known nodes. In this manuscript, hybrid metaheuristic optimization algorithms such as grey wolf optimization and salp swarm algorithm are used to solve localization problem of internet of things (IoT) sensors. Several experiments are conducted on every meta-heuristic optimization algorithm to compare them with the proposed method. The proposed algorithm achieved high accuracy with low error rate (0.001) and low power consumption.
A hybrid algorithm for voltage stability enhancement of distribution systems
Hazim Sadeq Mohsin Al-Wazni;
Shatha Suhbat Abdulla Al-Kubragyi
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp50-61
This paper presents a hybrid algorithm by applying a hybrid firefly and particle swarm optimization algorithm (HFPSO) to determine the optimal sizing of distributed generation (DG) and distribution static compensator (D-STATCOM) device. A multi-objective function is employed to enhance the voltage stability, voltage profile, and minimize the total power loss of the radial distribution system (RDS). Firstly, the voltage stability index (VSI) is applied to locate the optimal location of DG and D-STATCOM respectively. Secondly, to overcome the sup-optimal operation of existing algorithms, the HFPSO algorithm is utilized to determine the optimal size of both DG and D-STATCOM. Verification of the proposed algorithm has achieved on the standard IEEE 33-bus and Iraqi 65-bus radial distribution systems through simulation using MATLAB. Comprehensive simulation results of four different cases show that the proposed HFPSO demonstrates significant improvements over other existing algorithms in supporting voltage stability and loss reduction in distribution networks. Furthermore, comparisons have achieved to demonstrate the superiority of HFPSO algorithms over other techniques due to its ability to determine the global optimum solution by easy way and speed converge feature.
Comparison of backstepping, sliding mode and PID regulators for a voltage inverter
Radouane Majdoul;
Abdelwahed Touati;
Abderrahmane Ouchatti;
Abderrahim Taouni;
Elhassane Abdelmounim
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp166-178
In the present paper, an efficient and performant nonlinear regulator is designed for the control of the pulse width modulation (PWM) voltage inverter that can be used in a standalone photovoltaic microgrid. The main objective of our control is to produce a sinusoidal voltage output signal with amplitude and frequency that are fixed by the reference signal for different loads including linear or nonlinear types. A comparative performance study of controllers based on linear and non-linear techniques such as backstepping, sliding mode, and proportional integral derivative (PID) is developed to ensure the best choice among these three types of controllers. The performance of the system is investigated and compared under various operating conditions by simulations in the MATLAB/Simulink environment to demonstrate the effectiveness of the control methods. Our investigation shows that the backstepping controller can give better performance than the sliding mode and PID controllers. The accuracy and efficiency of the proposed backstepping controller are verified experimentally in terms of tracking objectives.
Amateur radio sensing technique using a combination of energy detection and waveform classification
Narathep Phruksahiran
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp399-410
A critical problem in spectrum sensing is to create a detection algorithm and test statistics. The existing approaches employ the energy level of each channel of interest. However, this feature cannot accurately characterize the actual application of public amateur radio. The transmitted signal is not continuous and may consist only of a carrier frequency without information. This paper proposes a novel energy detection and waveform feature classification (EDWC) algorithm to detect speech signals in public frequency bands based on energy detection and supervised machine learning. The energy level, descriptive statistics, and spectral measurements of radio channels are treated as feature vectors and classifiers to determine whether the signal is speech or noise. The algorithm is validated using actual frequency modulation (FM) broadcasting and public amateur signals. The proposed EDWC algorithm's performance is evaluated in terms of training duration, classification time, and receiver operating characteristic. The simulation and experimental outcomes show that the EDWC can distinguish and classify waveform characteristics for spectrum sensing purposes, particularly for the public amateur use case. The novel technical results can detect and classify public radio frequency signals as voice signals for speech communication or just noise, which is essential and can be applied in security aspects.