cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 110 Documents
Search results for , issue "Vol 12, No 1: February 2022" : 110 Documents clear
Classification of Arabic fricative consonants according to their places of articulation Youssef Elfahm; Nesrine Abajaddi; Badia Mounir; Laila Elmaazouzi; Ilham Mounir; Abdelmajid Farchi
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp936-945

Abstract

Many technology systems have used voice recognition applications to transcribe a speaker’s speech into text that can be used by these systems. One of the most complex tasks in speech identification is to know, which acoustic cues will be used to classify sounds. This study presents an approach for characterizing Arabic fricative consonants in two groups (sibilant and non-sibilant). From an acoustic point of view, our approach is based on the analysis of the energy distribution, in frequency bands, in a syllable of the consonant-vowel type. From a practical point of view, our technique has been implemented, in the MATLAB software, and tested on a corpus built in our laboratory. The results obtained show that the percentage energy distribution in a speech signal is a very powerful parameter in the classification of Arabic fricatives. We obtained an accuracy of 92% for non-sibilant consonants /f, χ, ɣ, ʕ, ћ, and h/, 84% for sibilants /s, sҁ, z, Ӡ and ∫/, and 89% for the whole classification rate. In comparison to other algorithms based on neural networks and support vector machines (SVM), our classification system was able to provide a higher classification rate.
Classification of three pathological voices based on specific features groups using support vector machine Muneera Altayeb; Amani Al-Ghraibah
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp946-956

Abstract

Determining and classifying pathological human sounds are still an interesting area of research in the field of speech processing. This paper explores different methods of voice features extraction, namely: Mel frequency cepstral coefficients (MFCCs), zero-crossing rate (ZCR) and discrete wavelet transform (DWT). A comparison is made between these methods in order to identify their ability in classifying any input sound as a normal or pathological voices using support vector machine (SVM). Firstly, the voice signal is processed and filtered, then vocal features are extracted using the proposed methods and finally six groups of features are used to classify the voice data as healthy, hyperkinetic dysphonia, hypokinetic dysphonia, or reflux laryngitis using separate classification processes. The classification results reach 100% accuracy using the MFCC and kurtosis feature group. While the other classification accuracies range between~60% to~97%. The Wavelet features provide very good classification results in comparison with other common voice features like MFCC and ZCR features. This paper aims to improve the diagnosis of voice disorders without the need for surgical interventions and endoscopic procedures which consumes time and burden the patients. Also, the comparison between the proposed feature extraction methods offers a good reference for further researches in the voice classification area.
Asymmetric image encryption scheme based on Massey Omura scheme Najlae Falah Hameed Al Saffar; Inaam R. Al-Saiq; Rewayda Razaq Mohsin Abo Alsabeh
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp1040-1047

Abstract

Asymmetric image encryption schemes have shown high resistance against modern cryptanalysis. Massey Omura scheme is one of the popular asymmetric key cryptosystems based on the hard mathematical problem which is discrete logarithm problem. This system is more secure and efficient since there is no exchange of keys during the protocols of encryption and decryption. Thus, this work tried to use this fact to propose a secure asymmetric image encryption scheme. In this scheme the sender and receiver agree on public parameters, then the scheme begin deal with image using Massey Omura scheme to encrypt it by the sender and then decrypted it by the receiver. The proposed scheme tested using peak signal to noise ratio, and unified average changing intensity to prove that it is fast and has high security.
Automated hierarchical classification of scanned documents using convolutional neural network and regular expression Rifiana Arief; Achmad Benny Mutiara; Tubagus Maulana Kusuma; Hustinawaty Hustinawaty
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp1018-1029

Abstract

This research proposed automated hierarchical classification of scanned documents with characteristics content that have unstructured text and special patterns (specific and short strings) using convolutional neural network (CNN) and regular expression method (REM). The research data using digital correspondence documents with format PDF images from pusat data teknologi dan informasi (technology and information data center). The document hierarchy covers type of letter, type of manuscript letter, origin of letter and subject of letter. The research method consists of preprocessing, classification, and storage to database. Preprocessing covers extraction using Tesseract optical character recognition (OCR) and formation of word document vector with Word2Vec. Hierarchical classification uses CNN to classify 5 types of letters and regular expression to classify 4 types of manuscript letter, 15 origins of letter and 25 subjects of letter. The classified documents are stored in the Hive database in Hadoop big data architecture. The amount of data used is 5200 documents, consisting of 4000 for training, 1000 for testing and 200 for classification prediction documents. The trial result of 200 new documents is 188 documents correctly classified and 12 documents incorrectly classified. The accuracy of automated hierarchical classification is 94%. Next, the search of classified scanned documents based on content can be developed.
A 15-Gbps BiCMOS XNOR gate for fast recognition of COVID-19 in binarized neural networks Rosana W. Marar; Hazem W. Marar
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp997-1002

Abstract

The COVID-19 pandemic is spreading around the world causing more than 177 million cases and over 3.8 million deaths according to the European Centre for Disease Prevention and Control. The virus has devastating effects on economies, health, and well-being of worldwide population. Due to the high increase in daily cases, the available number of COVID-19 test kits in under-developed countries is scarce. Hence, it is vital to implement an effective screening method of patients using chest radiography since the equipment already exists. With the presence of automatic detection systems, any abnormalities in chest radiography that characterizes COVID-19 can be identified. Several artificial-intelligence algorithms have been proposed to detect the virus. However, neural networks training is considered to be time-consuming. Since computations in training neural networks are spent on floating-point multiplications, high computational power is required. Multipliers consume the most space and power among all arithmetic operators in deep neural networks. This paper proposes a 15 Gbps high-speed bipolar-complementary-metal-oxide-semiconductor (BiCMOS) exclusive-nor (XNOR) gate to replace multipliers in binarized neural networks. The proposed gate can be implemented on BiCMOS-based field-programmable gate arrays (FPGAs). This will significantly improve the response time in identifying chest abnormalities in CT scans and X-rays.
Sierpinski carpet fractal monopole antenna for ultra-wideband applications Medhal Bharathraj Kumar; Praveen Jayappa
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp983-996

Abstract

Microstrip antenna is broadly used in the modern communication system due to its significant features such as light weight, inexpensive, low profile, and ease of integration with radio frequency devices. The fractal shape is applied in antenna geometry to obtain the ultra-wideband antennas. In this paper, the sierpinski carpet fractal monopole antenna (SCFMA) is developed for base case, first iteration and second iteration to obtain the wideband based on its space filling and self-similar characteristics. The dimension of the monopole patch size is optimized to minimize the overall dimension of the fractal antenna. Moreover, the optimized planar structure is proposed using the microstrip line feed. The monopole antenna is mounted on the FR4 substrate with the thickness of 1.6 mm with loss tangent of 0.02 and relative permittivity of 4.4. The performance of this SCFMA is analyzed in terms of area, bandwidth, return loss, voltage standing wave ratio, radiation pattern and gain. The proposed fractal antenna achieves three different bandwidth ranges such as 2.6-4.0 GHz, 2.5-4.3 GHz and 2.4-4.4 GHz for base case, first and second iteration respectively. The proposed SCFMA is compared with existing fractal antennas to prove the efficiency of the SCFMA design. The area of the SCFMA is 25×20 mm2, which is less when compared to the existing fractal antennas.
Misalignment fading effects on the ACC performance of relay-assisted MIMO/FSO systems over atmospheric turbulence channels Huu Ai Duong; Van Loi Nguyen; Khanh Ty Luong
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp966-973

Abstract

The continuous development of internet of things (IoT) technology enables many devices to be interconnected through the external environment. Meanwhile, 5G technology provides an enhanced quality of services with high data transmission rates, requiring IoT implementation in the 5G architecture. Free-space optical communication (FSO) is considered a promising technique that can provide high-speed communication links, so FSO is an optimal choice for wireless networks to fulfill the full potential of 5G technology, providing speeds of 100 Gb/s or more. By implementing 5G features in IoT, IoT coverage and performance will be enhanced by using FSO models. Therefore, the paper proposed and investigated the multiple-input and multiple-output/free-space optical communication (MIMO/FSO) model using subcarrier quadrature amplitude modulation (SC-QAM) and relay stations over atmospheric turbulence channels by log-normal and gamma-gamma distribution under different turbulence conditions. The performance is examined based on the average channel capacity (ACC), which is expressed in terms of average spectral efficiency (ASE) parameters while changing the different parameters of the model. The mathematical formulas of ACC for atmospheric turbulence cases are calculated and discussed the influence of turbulence strength, the different number of relay stations, misalignment effects, and different MIMO configurations.
Efficient organization of nodes in wireless sensor networks (clustering location-based LEACH) Mohammed Réda El Ouadi; Abderrahim Hasbi
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp1011-1017

Abstract

The rapid development of connected devices and wireless communication has enabled several researchers to study wireless sensor networks and propose methods and algorithms to improve their performance. Wireless sensor networks (WSN) are composed of several sensor nodes deployed to collect and transfer data to base station (BS). Sensor node is considered as the main element in this field, characterized by minimal capacities of storage, energy, and computing. In consequence of the important impact of the energy on network lifetime, several researches are interested to propose different mechanisms to minimize energy consumption. In this work, we propose a new enhancement of low-energy adaptive clustering hierarchy (LEACH) protocol, named clustering location-based LEACH (CLOC-LEACH), which represents a continuity of our previous published work location-based LEACH (LOC-LEACH). The proposed protocol organizes sensor nodes into four regions, using clustering mechanism. In addition, an efficient concept is adopted to choose cluster head. CLOC-LEACH considers the energy as the principal metric to choose cluster heads and uses a gateway node to ensure the inter-cluster communication. The simulation with MATLAB shows that our contribution offers better performance than LEACH and LOC-LEACH, in terms of stability, energy consumption and network lifetime.
Sentiment analysis on film review in Gujarati language using machine learning Parita Shah; Priya Swaminarayan; Maitri Patel
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp1030-1039

Abstract

Opinion analysis is by a long shot most basic zone of characteristic language handling. It manages the portrayal of information to choose the motivation behind the wellspring of the content. The reason might be of a type of gratefulness (positive) or study (negative). This paper offers a correlation between the outcomes accomplished by applying the calculation arrangement using various classifiers for instance K-nearest neighbor and multinomial naive Bayes. These techniques are utilized to assess a significant assessment with either a positive remark or negative remark. The gathered information considered on the grounds of the extremity film datasets and an association with the results accessible proof has been created for a careful assessment. This paper investigates the word level count vectorizer and term frequency inverse document frequency (TF-IDF) influence on film sentiment analysis. We concluded that multinomial Naive Bayes (MNB) classier generate more accurate result using TF-IDF vectorizer compared to CountVectorizer, K-nearest-neighbors (KNN) classifier has the same accuracy result in case of TF-IDF and CountVectorizer.
Four dimensional hyperchaotic communication system based on dynamic feedback synchronization technique for image encryption systems Hayder Mazin Makki Alibraheemi; Qais Al-Gayem; Ehab AbdulRazzaq Hussein
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp957-965

Abstract

This paper presents the design and simulation of a hyperchaotic communication system based on four dimensions (4D) Lorenz generator. The synchronization technique that used between the master/transmitter and the slave/receiver is based on dynamic feedback modulation technique (DFM). The mismatch error between the master dynamics and slave dynamics are calculated continuously to maintain the sync process. The information signal (binary image) is masked (encrypted) by the hyperchaotic sample x of Lorenz generator. The design and simulation of the overall system are carried out using MATLAB Simulink software. The simulation results prove that the system is suitable for securing the plain-data, in particular the image data with a size of 128×128 pixels within 0.1 second required for encryption, and decryption in the presence of the channel noise. The decryption results for gray and colored images show that the system can accurately decipher the ciphered image, but with low level distortion in the image pixels due to the channel noise. These results make the proposed cryptosystem suitable for real time secure communications.

Page 11 of 11 | Total Record : 110


Filter by Year

2022 2022


Filter By Issues
All Issue Vol 16, No 1: February 2026 Vol 15, No 6: December 2025 Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue