International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles
110 Documents
Search results for
, issue
"Vol 12, No 1: February 2022"
:
110 Documents
clear
Mutual query data sharing protocol for public key encryption through chosen-ciphertext attack in cloud environment
Tarasvi Lakum;
Barige Thirumala Rao
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp853-858
In this paper, we are proposing a mutual query data sharing protocol (MQDS) to overcome the encryption or decryption time limitations of exiting protocols like Boneh, rivest shamir adleman (RSA), Multi-bit transposed ring learning parity with noise (TRLPN), ring learning parity with noise (Ring-LPN) cryptosystem, key-Ordered decisional learning parity with noise (kO-DLPN), and KD_CS protocol’s. Titled scheme is to provide the security for the authenticated user data among the distributed physical users and devices. The proposed data sharing protocol is designed to resist the chosen-ciphertext attack (CCA) under the hardness solution for the query shared-strong diffie-hellman (SDH) problem. The evaluation of proposed work with the existing data sharing protocols in computational and communication overhead through their response time is evaluated.
An assessment of cybersecurity awareness level among Northeastern University students in Nigeria
Adamu Abdullahi Garba;
Maheyzah Muhamad Siraj;
Siti Hajar Othman
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp572-584
The world economy today has adopted the internet as a medium of transactions, this has made many organizations use the internet for their daily activities. With this, there is an urgent need to have knowledge in cybersecurity and also how to defend critical assets. The objective of this paper is to identify the level of cybersecurity awareness of students in Northeastern Nigeria. A quantitative approach was used for data collection and cyberbully, personal information, internet banking, internet addiction, and Self-protection were the items ask for cybersecurity awareness level identification. Descriptive analysis was performed for initial result findings using SPSS and OriginPro for graphical design. the preliminary result shows of the students have some basic knowledge of cybersecurity in an item like internet banking, while other items like cyberbully, self-protection and, internet addiction result show moderate awareness, the students' participation based on gender, males constitute 77.1% i.e. (N=340) and females constitute 22.9% i.e. (N=101). Future research would concentrate on designing awareness programs that would increase the level of their awareness especially the students in the Northeastern part of Nigeria.
Performance evaluation of wireless local area network with congested fading channels
Chanintorn Jittawiriyanukoon;
Vilasinee Srisarkun
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp411-417
The IEEE 802.11ay wireless communication standard consents gadgets to link in the spectrum of millimeter wave (mm-Wave) 60 Giga Hertz band through 100 Gbps bandwidth. The development of promising high bandwidth in communication networks is a must as QoS, throughput and error rates of bandwidth-intensive applications like merged reality (MR), artificial intelligence (AI) related apps or wireless communication boggling exceed the extent of the chronic 802.11 standard established in 2012. Thus, the IEEE 802.11ay task group committee has newly amended recent physical (PHY) and medium access control (MAC) blueprints to guarantee a technical achievement especially in link delay on multipath fading channels (MPFC). However, due to the congestion of super bandwidth intensive apps such as IoT and big data, we propose to diversify a propagation delay to practical extension. This article then focuses on a real-world situation and how the IEEE 802.11ay design is affected by the performance of mm-Wave propagation. In specific, we randomize the unstable MPFC link capacity by taking the divergence of congested network parameters into account. The efficiency of congested MPFC-based wireless network is simulated and confirmed by advancements described in the standard.
Solution for intra/inter-cluster event-reporting problem in cluster-based protocols for wireless sensor networks
Raed Taleb Al-Zubi;
Abdulraheem Ahmed Kreishan;
Mohammad Qasem Alawad;
Khalid Ahmad Darabkh
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp868-879
In recent years, wireless sensor networks (WSNs) have been considered one of the important topics for researchers due to their wide applications in our life. Several researches have been conducted to improve WSNs performance and solve their issues. One of these issues is the energy limitation in WSNs since the source of energy in most WSNs is the battery. Accordingly, various protocols and techniques have been proposed with the intention of reducing power consumption of WSNs and lengthen their lifetime. Cluster-oriented routing protocols are one of the most effective categories of these protocols. In this article, we consider a major issue affecting the performance of this category of protocols, which we call the intra/inter-cluster event-reporting problem (IICERP). We demonstrate that IICERP severely reduces the performance of a cluster-oriented routing protocol, so we suggest an effective Solution for IICERP (SIICERP). To assess SIICERP’s performance, comprehensive simulations were performed to demonstrate the performance of several cluster-oriented protocols without and with SIICERP. Simulation results revealed that SIICERP substantially increases the performance of cluster-oriented routing protocols.
Robust recognition technique for handwritten Kannada character recognition using capsule networks
N. Shobha Rani;
Manohar N.;
Hariprasad M.;
Pushpa B. R.
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp383-391
Automated reading of handwritten Kannada documents is highly challenging due to the presence of vowels, consonants and its modifiers. The variable nature of handwriting styles aggravates the complexity of machine based reading of handwritten vowels and consonants. In this paper, our investigation is inclined towards design of a deep convolution network with capsule and routing layers to efficiently recognize Kannada handwritten characters. Capsule network architecture is built of an input layer, two convolution layers, primary capsule, routing capsule layers followed by tri-level dense convolution layer and an output layer. For experimentation, datasets are collected from more than 100 users for creation of training data samples of about 7769 comprising of 49 classes. Test samples of all the 49 classes are again collected separately from 3 to 5 users creating a total of 245 samples for novel patterns. It is inferred from performance evaluation; a loss of 0.66% is obtained in the classification process and for 43 classes precision of 100% is achieved with an accuracy of 99%. An average accuracy of 95% is achieved for all remaining 6 classes with an average precision of 89%.
Utilization of idle time slot in spectrum sensing under noise uncertainty
Iyad Khalil Tumar;
Adnan Mohammad Arar;
Ayman Abd El Saleh
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp431-444
Spectrum sensing in cognitive radio (CR) is a critical process as it directly influences the accuracy of detection. Noise uncertainty affects the reliability of detecting vacant holes in the spectrum, thus limiting the access of that spectrum by secondary users (SUs). In such uncertain environment; SUs sense the received power of a primary user (PU) independently with different measures of signal-to-noise ratio (SNR). Long sensing time serves in mitigating the effect of noise uncertainty, but on the cost of throughput performance of CR system. In this paper, the scheme of an asynchronous and crossed sensing-reporting is presented. The scheme reduces energy consumption during sensing process without affecting the detection accuracy. Exploiting the included idle time (????????) in sensing time slot; each SU collects power samples with higher SNR directly performs the reporting process to a fusion center (FC) consecutively. The FC terminates the sensing and reporting processes at a specific sensing time that corresponds to the lowest SNR (????????????????????????????). Furthermore, this integrated scheme aims at optimizing the total frame duration (????????). Mathematical expressions of the scheme are obtained. Analytical results show the efficiency of the scheme in terms of energy saving and throughput increment under noise uncerainty.
MRI image segmentation using machine learning networks and level set approaches
Layth Kamil Adday Almajmaie;
Ahmed Raad Raheem;
Wisam Ali Mahmood;
Saad Albawi
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp793-801
The segmented brain tissues from magnetic resonance images (MRI) always pose substantive challenges to the clinical researcher community, especially while making precise estimation of such tissues. In the recent years, advancements in deep learning techniques, more specifically in fully convolution neural networks (FCN) have yielded path breaking results in segmenting brain tumour tissues with pin-point accuracy and precision, much to the relief of clinical physicians and researchers alike. A new hybrid deep learning architecture combining SegNet and U-Net techniques to segment brain tissue is proposed here. Here, a skip connection of the concerned U-Net network was suitably explored. The results indicated optimal multi-scale information generated from the SegNet, which was further exploited to obtain precise tissue boundaries from the brain images. Further, in order to ensure that the segmentation method performed better in conjunction with precisely delineated contours, the output is incorporated as the level set layer in the deep learning network. The proposed method primarily focused on analysing brain tumor segmentation (BraTS) 2017 and BraTS 2018, dedicated datasets dealing with MRI brain tumour. The results clearly indicate better performance in segmenting brain tumours than existing ones.
Technical analysis of content placement algorithms for content delivery network in cloud
Suman Jayakumar;
Prakash Sheelvanthmath;
Channappa Baslingappa Akki
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp489-496
Content placement algorithm is an integral part of the cloud-based content de-livery network. They are responsible for selecting a precise content to be re-posited over the surrogate servers distributed over a geographical region. Although various works are being already carried out in this sector, there are loopholes connected to most of the work, which doesn't have much disclosure. It is already known that quality of service, quality of experience, and the cost is always an essential objective targeting to be improved in existing work. Still, there are various other aspects and underlying reasons which are equally important from the design aspect. Therefore, this paper contributes towards reviewing the existing approaches of content placement algorithm over cloud-based content delivery network targeting to explore open-end re-search issues.
Benchmarking study between capacitive and electronic load technic to track I-V and P-V of a solar panel
Abdellah Asbayou;
Amine Aamoume;
Mustapha Elyaqouti;
Ahmed Ihlal;
Lahoussine Bouhouch
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp102-113
To detect defects of solar panel and understand the effect of external parameters such as fluctuations in illumination, temperature, and the effect of a type of dust on a photovoltaic (PV) panel, it is essential to plot the Ipv=f(Vpv) characteristic of the PV panel, and the simplest way to plot this I-V characteristic is to use a variable resistor. This paper presents a study of comparison and combination between two methods: capacitive and electronic loading to track I-V characteristic. The comparison was performed in terms of accuracy, response time and instrumentation cost used in each circuit, under standard temperature and illumination conditions by using polycrystalline solar panel type SX330J and monocrystalline solar panels type ET-M53630. The whole system is based on simple components, less expensive and especially widely used in laboratories. The results will be between the datasheet of the manufacturer with the experimental data, refinements and improvements concerning the number of points and the trace time have been made by combining these two methods.
Evolutionary tree-based quasi identifier and federated gradient privacy preservations over big healthcare data
Sujatha Krishna;
Udayarani Vinayaka Murthy
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v12i1.pp903-913
Big data has remodeled the way organizations supervise, examine and leverage data in any industry. To safeguard sensitive data from public contraventions, several countries investigated this issue and carried out privacy protection mechanism. With the aid of quasi-identifiers privacy is not said to be preserved to a greater extent. This paper proposes a method called evolutionary tree-based quasi-identifier and federated gradient (ETQI-FD) for privacy preservations over big healthcare data. The first step involved in the ETQI-FD is learning quasi-identifiers. Learning quasi-identifiers by employing information loss function separately for categorical and numerical attributes accomplishes both the largest dissimilarities and partition without a comprehensive exploration between tuples of features or attributes. Next with the learnt quasi-identifiers, privacy preservation of data item is made by applying federated gradient arbitrary privacy preservation learning model. This model attains optimal balance between privacy and accuracy. In the federated gradient privacy preservation learning model, we evaluate the determinant of each attribute to the outputs. Then injecting Adaptive Lorentz noise to data attributes our ETQI-FD significantly minimizes the influence of noise on the final results and therefore contributing to privacy and accuracy. An experimental evaluation of ETQI-FD method achieves better accuracy and privacy than the existing methods.