cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 111 Documents
Search results for , issue "Vol 12, No 2: April 2022" : 111 Documents clear
An enhanced control strategy based imaginary swapping instant for induction motor drives Iliass Rkik; Mohamed El Khayat; Abdelali Ed-Dahhak; Mohammed Guerbaoui; Abdeslam Lachhab
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1102-1112

Abstract

The main aim of this paper is to present a novel control approach of an induction machine (IM) using an improved space vector modulation based direct torque control (SVM-DTC) on the basis of imaginary swapping instant technique. The improved control strategy is presented to surmount the drawbacks of the classical direct torque control (DTC) and to enhance the dynamic performance of the induction motor. This method requires neither angle identification nor sector determination; the imaginary swapping instant vector is used to fix the effective period in which the power is transferred to the IM. Both the classical DTC method and the suggested adaptive DTC techniques have been carried out in MATLAB/SimulinkTM. Simulation results shows the effectiveness of the enhanced control strategy and demonstrate that torque and flux ripples are massively diminished compared to the conventional DTC (CDTC) which gives a better performance. Finally, the system will also be tested for its robustness against variations in the IM parameters.
Cosine similarity-based algorithm for social networking recommendation Shaha Al-Otaibi; Nourah Altwoijry; Alanoud Alqahtani; Latifah Aldheem; Mohrah Alqhatani; Nouf Alsuraiby; Sarah Alsaif; Shahla Albarrak
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1881-1892

Abstract

Social media have become a discussion platform for individuals and groups. Hence, users belonging to different groups can communicate together. Positive and negative messages as well as media are circulated between those users. Users can form special groups with people who they already know in real life or meet through social networking after being suggested by the system. In this article, we propose a framework for recommending communities to users based on their preferences; for example, a community for people who are interested in certain sports, art, hobbies, diseases, age, case, and so on. The framework is based on a feature extraction algorithm that utilizes user profiling and combines the cosine similarity measure with term frequency to recommend groups or communities. Once the data is received from the user, the system tracks their behavior, the relationships are identified, and then the system recommends one or more communities based on their preferences. Finally, experimental studies are conducted using a prototype developed to test the proposed framework, and results show the importance of our framework in recommending people to communities.
Gender recognition from unconstrained selfie images: a convolutional neural network approach Saddam Bekhet; Abdullah M. Alghamdi; Islam F. Taj-Eddin
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp2066-2078

Abstract

Human gender recognition is an essential demographic tool. This is reflected in forensic science, surveillance systems and targeted marketing applications. This research was always driven using standard face images and hand-crafted features. Such way has achieved good results, however, the reliability of the facial images had a great effect on the robustness of extracted features, where any small change in the query facial image could change the results. Nevertheless, the performance of current techniques in unconstrained environments is still inefficient, especially when contrasted against recent breakthroughs in different computer vision research. This paper introduces a novel technique for human gender recognition from non-standard selfie images using deep learning approaches. Selfie photos are uncontrolled partial or full-frontal body images that are usually taken by people themselves in real-life environment. As far as we know this is the first paper of its kind to identify gender from selfie photos, using deep learning approach. The experimental results on the selfie dataset emphasizes the proposed technique effectiveness in recognizing gender from such images with 89% accuracy. The performance is further consolidated by testing on numerous benchmark datasets that are widely used in the field, namely: Adience, LFW, FERET, NIVE, Caltech WebFaces andCAS-PEAL-R1.
Ontology specific visual canvas generation to facilitate sense-making-an algorithmic approach Kaneeka Vidanage; Noor Maizura Mohamad Noor; Rosmayati Mohemad; Zuriana Abu Bakar
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1818-1830

Abstract

Ontologies are domain-specific conceptualizations that are both human and machine-readable. Due to this remarkable attribute of ontologies, its applications are not limited to computing domains. Banking, medicine, agriculture, and law are a few of the non-computing domains, where ontologies are being used very effectively. When creating ontologies for non-computing domains, involvement of the non-computing domain specialists like bankers, lawyers, farmers become very vital. Hence, they are not semantic specialists, particularly designed visualization assistance is required for the ontology schema verifications and sense-making. Existing visualization methods are not fine-tuned for non-technical domain specialists and there are lots of complexities. In this research, a novel algorithm capable of generating domain specialists’ friendlier visualization canvas has been explored. This proposed algorithm and the visualization canvas has been tested for three different domains and overall success of 85% has been yielded.
Using deep learning to detecting abnormal behavior in internet of things Mohammed Al-Shabi; Anmar Abuhamdah
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp2108-2120

Abstract

The development of the internet of things (IoT) has increased exponentially, creating a rapid pace of changes and enabling it to become more and more embedded in daily life. This is often achieved through integration: IoT is being integrated into billions of intelligent objects, commonly labeled “things,” from which the service collects various forms of data regarding both these “things” themselves as well as their environment. While IoT and IoT-powered decices can provide invaluable services in various fields, unauthorized access and inadvertent modification are potential issues of tremendous concern. In this paper, we present a process for resolving such IoT issues using adapted long short-term memory (LSTM) recurrent neural networks (RNN). With this method, we utilize specialized deep learning (DL) methods to detect abnormal and/or suspect behavior in IoT systems. LSTM RNNs are adopted in order to construct a high-accuracy model capable of detecting suspicious behavior based on a dataset of IoT sensors readings. The model is evaluated using the Intel Labs dataset as a test domain, performing four different tests, and using three criteria: F1, Accuracy, and time. The results obtained here demonstrate that the LSTM RNN model we create is capable of detecting abnormal behavior in IoT systems with high accuracy.
A face recognition system using convolutional feature extraction with linear collaborative discriminant regression classification Sangamesh Hosgurmath; Viswanatha Vanjre Mallappa; Nagaraj B. Patil; Vishwanath Petli
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1468-1476

Abstract

Face recognition is one of the important biometric authentication research areas for security purposes in many fields such as pattern recognition and image processing. However, the human face recognitions have the major problem in machine learning and deep learning techniques, since input images vary with poses of people, different lighting conditions, various expressions, ages as well as illumination conditions and it makes the face recognition process poor in accuracy. In the present research, the resolution of the image patches is reduced by the max pooling layer in convolutional neural network (CNN) and also used to make the model robust than other traditional feature extraction technique called local multiple pattern (LMP). The extracted features are fed into the linear collaborative discriminant regression classification (LCDRC) for final face recognition. Due to optimization using CNN in LCDRC, the distance ratio between the classes has maximized and the distance of the features inside the class reduces. The results stated that the CNN-LCDRC achieved 93.10% and 87.60% of mean recognition accuracy, where traditional LCDRC achieved 83.35% and 77.70% of mean recognition accuracy on ORL and YALE databases respectively for the training number 8 (i.e. 80% of training and 20% of testing data).
Design and development of learning model for compression and processing of deoxyribonucleic acid genome sequence Raveendra Gudodagi; Rayapur Venkata Siva Reddy; Mohammed Riyaz Ahmed
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1786-1794

Abstract

Owing to the substantial volume of human genome sequence data files (from 30-200 GB exposed) Genomic data compression has received considerable traction and storage costs are one of the major problems faced by genomics laboratories. This involves a modern technology of data compression that reduces not only the storage but also the reliability of the operation. There were few attempts to solve this problem independently of both hardware and software. A systematic analysis of associations between genes provides techniques for the recognition of operative connections among genes and their respective yields, as well as understandings into essential biological events that are most important for knowing health and disease phenotypes. This research proposes a reliable and efficient deep learning system for learning embedded projections to combine gene interactions and gene expression in prediction comparison of deep embeddings to strong baselines. In this paper we preform data processing operations and predict gene function, along with gene ontology reconstruction and predict the gene interaction. The three major steps of genomic data compression are extraction of data, storage of data, and retrieval of the data. Hence, we propose a deep learning based on computational optimization techniques which will be efficient in all the three stages of data compression.
A novel algorithm for software defined networks model to enhance the quality of services and scalability in wireless network Ahmad Sharadqeh
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1585-1592

Abstract

Software defined networks (SDN) have replaced the traditional network architecture by separating the control from forwarding planes. SDN technology utilizes computer resources to provide worldwide effective service than the aggregation of single internet resources usage. Breakdown while resource allocation is a major concern in cloud computing due to the diverse and highly complex architecture of resources. These resources breakdowns cause delays in job completion and have a negative influence on attaining quality of service (QoS). In order to promote error-free task scheduling, this study represents a promising fault-tolerance scheduling technique. For optimum QoS, the suggested restricted Boltzmann machine (RBM) approach takes into account the most important characteristics like current consumption of the resources and rate of failure. The proposed approach's efficiency is verified using the MATLAB toolbox by employing widely used measures such as resource consumption, average processing time, throughput and rate of success.
Comparison of resting electroencephalogram coherence in patients with mild cognitive impairment and normal elderly subjects Sugondo Hadiyoso; Inung Wijayanto; Suci Aulia
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1558-1564

Abstract

Mild cognitive impairment (MCI) was a condition beginning before more serious deterioration, leading to Alzheimer’s dementia (AD). MCI detection was needed to determine the patient's therapeutic management. Analysis of electroencephalogram (EEG) coherence is one of the modalities for MCI detection. Therefore, this study investigated the inter and intra-hemispheric coherence over 16 EEG channels in the frequency range of 1-30 Hz. The simulation results showed that most of the electrode pair coherence in MCI patients have decreased compared to normal elderly subjects. In inter hemisphere coherence, significant differences (p<0.05) were found in the FP1-FP2 electrode pairs. Meanwhile, significant differences (p<0.05) were found in almost all pre-frontal area connectivity of the intra-hemisphere coherence pairs. The electrode pairs were FP2-F4, FP2-T4, FP1-F3, FP1-F7, FP1-C3, FP1-T3, FP1-P3, FP1-T5, FP1-O1, F3-O1, and T3-T5. The decreased coherence in MCI patients showed the disconnection of cortical connections as a result of the death of the neurons. Furthermore, the coherence value can be used as a multimodal feature in normal elderly subjects and MCI. It is hoped that current studies may be considered for early detection of Alzheimer’s in a larger population.
Big five personality prediction based in Indonesian tweets using machine learning methods Maharani, Warih; Effendy, Veronikha
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1973-1981

Abstract

The popularity of social media has drawn the attention of researchers who have conducted cross-disciplinary studies examining the relationship between personality traits and behavior on social media. Most current work focuses on personality prediction analysis of English texts, but Indonesian has received scant attention. Therefore, this research aims to predict user’s personalities based on Indonesian text from social media using machine learning techniques. This paper evaluates several machine learning techniques, including naive Bayes (NB), K-nearest neighbors (KNN), and support vector machine (SVM), based on semantic features including emotion, sentiment, and publicly available Twitter profile. We predict the personality based on the big five personality model, the most appropriate model for predicting user personality in social media. We examine the relationships between the semantic features and the Big Five personality dimensions. The experimental results indicate that the Big Five personality exhibit distinct emotional, sentimental, and social characteristics and that SVM outperformed NB and KNN for Indonesian. In addition, we observe several terms in Indonesian that specifically refer to each personality type, each of which has distinct emotional, sentimental, and social features.

Page 10 of 12 | Total Record : 111


Filter by Year

2022 2022


Filter By Issues
All Issue Vol 15, No 6: December 2025 Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue