cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 112 Documents
Search results for , issue "Vol 12, No 3: June 2022" : 112 Documents clear
Robot for plastic garbage recognition Janusz Bobulski; Mariusz Kubanek
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp2425-2431

Abstract

Waste and related threats are becoming more and more severe problems in environmental security. There is growing attention in waste management globally, both in developing techniques to decrease their quantity and those correlated to their neutralization and commercial use. The basic segregation process of waste due to the type of material is insufficient, as we can reuse only some kinds of plastic. There are difficulties with the effective separation of the different kinds of plastic; therefore, we should develop modern techniques for sorting the plastic fraction. One option is to use deep learning and a convolutional neural network (CNN). The main problem that we considered in this article is creating a method for automatically segregating plastic waste into seven specific subcategories based on the camera image. The technique can be applied to the mobile robot for gathering waste. It would be helpful at the terrain and the sorting plants. The paper presents a 15-layer convolutional neural network capable of recognizing seven plastic materials with good efficiency.
Comparison of two deep learning methods for detecting fire hotspots Dewi Putrie Lestari; Rifki Kosasih
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp3118-3128

Abstract

Every high-rise building must meet construction requirements, i.e. it must have good safety to prevent unexpected events such as fire incident. To avoid the occurrence of a bigger fire, surveillance using closed circuit television (CCTV) videos is necessary. However, it is impossible for security forces to monitor for a full day. One of the methods that can be used to help security forces is deep learning method. In this study, we use two deep learning methods to detect fire hotspots, i.e. you only look once (YOLO) method and faster region-based convolutional neural network (faster R-CNN) method. The first stage, we collected 100 image data (70 training data and 30 test data). The next stage is model training which aims to make the model can recognize fire. Later, we calculate precision, recall, accuracy, and F1 score to measure performance of model. If the F1 score is close to 1, then the balance is optimal. In our experiment results, we found that YOLO has a precision is 100%, recall is 54.54%, accuracy is 66.67%, and F1 score is 0.70583667. While faster R-CNN has a precision is 87.5%, recall is 95.45%, accuracy is 86.67%, and F1 score is 0.913022.
Notice of Retraction Combining 3D run-length encoding coding and searching techniques for medical image compression Arif Sameh Arif; Muntaha Abood Jassim
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp2601-2613

Abstract

Notice of Retraction-----------------------------------------------------------------------After careful and considered review of the content of this paper by a duly constituted expert committee, this paper has been found to be in violation of IAES's Publication Principles.We hereby retract the content of this paper. Reasonable effort should be made to remove all past references to this paper.The presenting author of this paper has the option to appeal this decision by contacting ijece@iaesjournal.com.-----------------------------------------------------------------------The field of image compression became a mandatory tool to face the increasing and advancing production of medical images, besides the inevitable need for smaller size of medical images in telemedicine systems. In spite of its simplicity, run-length encoding (RLE) technique is a considerably effective and practical tool in the field of lossless image compression. Such that, it is widely recommended for 2D space that utilizes common searching techniques like linear and zigzag. This paper adopts a new algorithm taking advantage of the potential simplicity of the run-length algorithm to contribute a volumetric RLE approach for binary medical data in the 3D form. The proposed volumetric-RLE (VRLE) algorithm differs from the 2D RLE approach utilizing correlations of intra-slice only, which is used for compressing binary medical data utilizing voxel-correlations of inter-slice. Furthermore, several forms of scanning are used to extending proposed technique like Hilbert and Perimeter, which determines the best possible procedure of scanning suitable for data morphology considering the segmented organ. This work employs proposed algorithm on four image datasets to get as sufficient as possible evaluation. Experimental results and benchmarking illustrate that the performance of the proposed technique surpasses other state-of-the-art techniques with 1:30 enhancement on average.
A current control method for bidirectional multiphase DC-DC boost-buck converter Gifari Iswandi Hasyim; Sulistyo Wijanarko; Jihad Furqani; Arwindra Rizqiawan; Pekik Argo Dahono
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp2363-2377

Abstract

In the future, more and more electric vehicle (EV) batteries are connected to the direct current (DC) microgrid. Depending on the battery state of charge, the battery voltage can be higher or lower than the DC microgrid voltage. A converter that is aimed to fulfil such function must be capable of working in both charging and discharging regardless the voltage level of the battery and DC microgrid. Battery performance degradation due to ripple current entering the battery is also a concern. In this paper, a converter that can minimize ripple current that entering battery and operate in two power-flow directions regardless of battery and DC microgrid voltage level is presented. A current control method for this kind of converter was proposed. Experiment on a prototype was conducted to prove the proposed converter current control method.
Radial basis network estimator of oxygen content in the flue gas of debutanizer reboiler Shafanda Nabil Sembodo; Nazrul Effendy; Kenny Dwiantoro; Nidlom Muddin
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp3044-3050

Abstract

The energy efficiency in the debutanizer reboiler combustion can be monitored from the oxygen content of the flue gas of the reboiler. The measurement of the oxygen content can be conducted in situ using an oxygen sensor. However, soot that may appear around the sensor due to the combustion process in the debutanizer reboiler can obstruct the sensor’s function. In-situ redundancy sensors’ unavailability is a significant problem when the sensor is damaged, so measures must be made directly by workers using portable devices. On the other hand, worker safety is a primary concern when working in high-risk work areas. In this paper, we propose a software-based measurement or soft sensor to overcome the problems. The radial basis function network model makes soft sensors adapt to data updates because of their advantage as a universal approximator. The estimation of oxygen content with a soft sensor has been successfully carried out. The soft sensor generates an estimated mean square error of 0.216% with a standard deviation of 0.0242%. Stochastics gradient descent algorithm with momentum acceleration and dimension reduction using principal component analysis successfully improves the soft sensors’ performance.
Economic dispatch by optimization techniques Ali Abttan, Rana; Hasan Tawafan, Adnan; Jaafar Ismael, Samar
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp2228-2241

Abstract

The current paper offers the solution strategy for the economic dispatch problem in electric power system implementing ant lion optimization algorithm (ALOA) and bat algorithm (BA) techniques. In the power network, the economic dispatch (ED) is a short-term calculation of the optimum performance of several electricity generations or a plan of outputs of all usable power generation units from the energy produced to fulfill the necessary demand, although equivalent and unequal specifications need to be achieved at minimal fuel and carbon pollution costs. In this paper, two recent meta-heuristic approaches are introduced, the BA and ALOA. A rigorous stochastically developmental computing strategy focused on the action and intellect of ant lions is an ALOA. The ALOA imitates ant lions' hunting process. The introduction of a numerical description of its biological actions for the solution of ED in the power framework. These algorithms are applied to two systems: a small scale three generator system and a large scale six generator. Results show were compared on the metrics of convergence rate, cost, and average run time that the ALOA and BA are suitable for economic dispatch studies which is clear in the comparison set with other algorithms. Both of these algorithms are tested on IEEE-30 bus reliability test system.
Design of Savonius model wind turbine for power catchment Liew Hui Fang; Rosemizi bin Abd Rahim
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp2285-2299

Abstract

In this study, the fossil fuel usage by-product is carbon dioxide, which is known as the primary cause in global warming. Alternatively, wind energy is a clean alternative energy source compared the fuel consumption can cause smoke pollution. The goal of the work is to develop a pollution controller device model Savonius wind turbine to represent the characterized actual speed wind turbine concepts into convert kinetic energy into electric energy from campus and monitoring all output data display on the cloud. The wind speed operation is enabled through the use of ESP8266 as internet of things (IoT) platform and the alternating current (AC) direct current (DC) harvesting circuit into improve stability of the wind energy performance. Secondly, a magnet coil synchronous generator is used, which is a grid coupled through a diode rectifier and voltage source converter. The parameters that have been measured using wireless fidelity (Wi-Fi) module ESP8266 are considering wind speed, current, voltage and power. The wind speed with 7.8 MPH can produce a maximum output voltage and output current of 1.104 V and 4.321 μA, respectively. Blynk applications functional as role present performance monitoring kit wind turbine analysis with more precise and efficient in anywhere and anytime.
Real-time face detection in digital video-based on Viola-Jones supported by convolutional neural networks Tameem Hameed Obaida; Abeer Salim Jamil; Nidaa Flaih Hassan
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp3083-3091

Abstract

Face detection is a critical function of security (secure witness face in the video) who appear in a scene and are frequently captured by the camera. Recognition of people from their faces in images has recently piqued the scientific community, partly due to application concerns, but also for the difficulty this characterizes for the algorithms of artificial vision. The idea for this research stems from a broad interest in courtroom witness face detection. The goal of this work is to detect and track the face of a witness in court. In this work, a Viola-Jones method is used to extract human faces and then a particular transformation is applied to crop the image. Witness and non-witness images are classified using convolutional neural networks (CNN). The Kanade-Lucas-Tomasi (KLT) algorithm was utilized to track the witness face using trained features. In this model, the two methods were combined in one model to take the advantage of each method in terms of speed and reduce the amount of space required to implement CNN and detection accuracy. After the test, the results of the proposed model showed that it was 99.5% percent accurate when executed in real-time and with adequate lighting.
Fake accounts detection on social media using stack ensemble system Amna Kadhim Ali; Abdulhussein Mohsin Abdullah
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp3013-3022

Abstract

In today’s world, social media has spread widely, and the social life of people have become deeply associated with social media use. They use it to communicate with each other, share events and news, and even run businesses. The huge growth in social media and the massive number of users has lured attackers to distribute harmful content through fake accounts, leading to a large number of people falling victim to those accounts. In this work, we propose a mechanism for identifying fake accounts on the social media site Twitter by using two methods to preprocess data and extract the most effective features, they are the spearman correlation coefficient and the chi-square test. For classification, we used supervised machine learning algorithms based on the ensemble system (stack method) by using random forest, support vector machine, and Naive Bayes algorithms in the first level of the stack, and the logistic regression algorithm as a meta classifier. The stack ensemble system was shown to be effective in achieving the best results when compared to the algorithms used with it, with data accuracy reaching 99%.
Technique for recognizing faces using a hybrid of moments and a local binary pattern histogram Raheem Ogla; Ali Adel Saeid; Shaimaa H. Shaker
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp2571-2581

Abstract

The face recognition process is widely studied, and the researchers made great achievements, but there are still many challenges facing the applications of face detection and recognition systems. This research contributes to overcoming some of those challenges and reducing the gap in the previous systems for identifying and recognizing faces of individuals in images. The research deals with increasing the precision of recognition using a hybrid method of moments and local binary patterns (LBP). The moment technique computed several critical parameters. Those parameters were used as descriptors and classifiers to recognize faces in images. The LBP technique has three phases: representation of a face, feature extraction, and classification. The face in the image was subdivided into variable-size blocks to compute their histograms and discover their features. Fidelity criteria were used to estimate and evaluate the findings. The proposed technique used the standard Olivetti Research Laboratory dataset in the proposed system training and recognition phases. The research experiments showed that adopting a hybrid technique (moments and LBP) recognized the faces in images and provide a suitable representation for identifying those faces. The proposed technique increases accuracy, robustness, and efficiency. The results show enhancement in recognition precision by 3% to reach 98.78%.

Page 3 of 12 | Total Record : 112


Filter by Year

2022 2022


Filter By Issues
All Issue Vol 15, No 6: December 2025 Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue