International Journal of Power Electronics and Drive Systems (IJPEDS)
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Articles
12 Documents
Search results for
, issue
"Vol 1, No 2: December 2011"
:
12 Documents
clear
Modeling & Simulation of Fuel cell (Choi Model) based 3-Phase Voltage Source Inverter
Gaurav Sachdeva
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 1, No 2: December 2011
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
In the present work, performance of three phase voltage source inverter, while feeding different power factor loads, has been investigated. Fuel cells models namely Choi model are used in input side as a DC source while dynamic load have been used at the output side. Dynamic load used is induction motor (IM). Performance of IM has been investigated under various loading conditions. ANN based control strategy has been proposed to find the conduction angle of a Three Phase VSI and verified for IM load. Simulations have been performed using PSIM 7.0.5 and MATLAB 7.0.4.DOI : http://dx.doi.org/10.11591/ijpeds.v1i2.109
A Novel Direct Torque Control Permanent Magnet Synchronous Motor Drive used in Electrical Vehicle
Yaohua Li;
Ma Jian;
Yu Qiang;
Liu Jiangyu
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 1, No 2: December 2011
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
In this paper, a modified direct torque control (DTC) scheme for permanent magnet synchronous motor (PMSM) is investigated, which enables low torque ripple by using an improved voltage vector selection strategy instead of switching table used in conventional DTC. Based on the control of stator flux, torque angle and torque, voltage vector selection strategy of PMSM DTC drive is proposed. In the proposed voltage vector selection strategy, the applied voltage vector is determined according to outputs of hysteresis comparators for stator flux and torque, angular position of stator flux and torque angle, which is finally synthesized by space vector modulation (SVM). Modeling and experimental results for an interior PMSM used in Honda Civic 06My Hybrid electrical vehicle are given. Simulation and experimental results show torque ripple is reduced and the total harmonics of stator current is decreased when compared those of conventional DTC. And a fixed switching frequency is obtained with the help of SVM. In addition, the proposed DTC doesn’t need any additional PI controller, which maintains the simplicity in conventional DTC.DOI: http://dx.doi.org/10.11591/ijpeds.v1i2.141Keywords: direct torque control, permanent magnet synchronous motor, electrical vehicle, torque ripple, switching frequency