International Journal of Power Electronics and Drive Systems (IJPEDS)
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Articles
12 Documents
Search results for
, issue
"Vol 3, No 4: December 2013"
:
12 Documents
clear
Simple Switching Strategy for High-Torque Control Performance utilizing Neutral Point Clamped Multilevel Inverter
Nor Faezah Alias;
Auzani Jidin;
Atikah Razi;
Tole Sutikno;
Huzainirah Ismail
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 3, No 4: December 2013
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
Three-level Neutral Point Clamped (NPC) inverter allows the configuration of switching devices to operate at high voltage and produce lower current/voltage harmonics. It is known that, DTC of induction machine which employs hysteresis controller has major drawbacks namely larger torque ripple and variable switching frequency. This paper aims to propose a suitable voltage vector selection to provide better torque regulation and lower switching frequency by employing DTC with 3-level NPC multilevel inverter. A simple switching strategy was formulated using 7-level torque hysteresis and 2-level flux hysteresis controllers to give more options in selecting an appropriate voltage vector, inherently, according the motor operation conditions. The improvements offered were verified through simulations.DOI: http://dx.doi.org/10.11591/ijpeds.v3i4.5248
Hybrid Fuzzy Sliding Mode Control of a DFIG Integrated into the Network
Belabbas Belkacem;
Tayeb Allaoui;
Mohamed Tadjine;
Ahmed Safa
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 3, No 4: December 2013
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
This paper presents the study of a variable speed wind energy conversion system using a Doubly Fed Induction Generator (DFIG) based on a Fuzzy sliding mode control (FSMC) applied to achieve control of active and reactive powers exchanged between the stator of the DFIG and the grid to ensure a Maximum Power Point Tracking (MPPT) of a wind energy conversion system. However the principal drawback of the sliding mode, is the chattering effect which characterized by torque ripple, this phenomena is undesirable and harmful for the machines, it generates noises and additional forces of torsion on the machine shaft. In order to reduce the chattering effect, the Sign function of sliding mode controller’s discontinuous part is replaced by a fuzzy logic; we will have the fuzzy sliding mode controller (FSMC). The FSMC makes it possible to combine the performances of the two types of controllers (SMC and FLC) and eliminates the chattering effect. The proposed control algorithm is applied to a DFIG where the stator is directly connected to the grid and the rotor is connected to a three-level converter structure NPC to suppress low level harmonics, higher frequencies will be filtered out by the machine. Second goal of this paper is to extract a maximum of power; the rotor side converter is controlled by using a stator flux-oriented strategy. The decoupling created by the control between active and reactive stator power allows keeping the power factor close to unity. Simulation results show that the wind turbine can operate at its optimum energy for a wide range of wind speed. Both simulation and validation results show effectiveness of the proposed control strategy is in terms of power regulation. Moreover, the fuzzy sliding mode approach is arranged so as to reduce the chattering produced in the generated power that could lead to increased mechanical stress because of strong torque variations.DOI: http://dx.doi.org/10.11591/ijpeds.v3i4.4072