cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Power Electronics and Drive Systems (IJPEDS)
ISSN : -     EISSN : 20888694     DOI : -
Core Subject : Engineering,
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Arjuna Subject : -
Articles 12 Documents
Search results for , issue "Vol 3, No 4: December 2013" : 12 Documents clear
Simple Switching Strategy for High-Torque Control Performance utilizing Neutral Point Clamped Multilevel Inverter Nor Faezah Alias; Auzani Jidin; Atikah Razi; Tole Sutikno; Huzainirah Ismail
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 3, No 4: December 2013
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Three-level Neutral Point Clamped (NPC) inverter allows the configuration of switching devices to operate at high voltage and produce lower current/voltage harmonics. It is known that, DTC of induction machine which employs hysteresis controller has major drawbacks namely larger torque ripple and variable switching frequency. This paper aims to propose a suitable voltage vector selection to provide better torque regulation and lower switching frequency by employing DTC with 3-level NPC multilevel inverter. A simple switching strategy was formulated using 7-level torque hysteresis and 2-level flux hysteresis controllers to give more options in selecting an appropriate voltage vector, inherently, according the motor operation conditions. The improvements offered were verified through simulations.DOI: http://dx.doi.org/10.11591/ijpeds.v3i4.5248
Hybrid Fuzzy Sliding Mode Control of a DFIG Integrated into the Network Belabbas Belkacem; Tayeb Allaoui; Mohamed Tadjine; Ahmed Safa
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 3, No 4: December 2013
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This paper presents the study of a variable speed wind energy conversion system using a Doubly Fed Induction Generator (DFIG) based on a Fuzzy sliding mode control (FSMC) applied to achieve control of active and reactive powers exchanged between the stator of the DFIG and the grid to ensure a Maximum Power Point Tracking (MPPT) of a wind energy conversion system. However the principal drawback of the sliding mode, is the chattering effect which characterized by torque ripple, this phenomena is undesirable and harmful for the machines, it generates noises and additional forces of torsion on the machine shaft. In order to reduce the chattering effect, the Sign function of sliding mode controller’s discontinuous part is replaced by a fuzzy logic; we will have the fuzzy sliding mode controller (FSMC). The FSMC makes it possible to combine the performances of the two types of controllers (SMC and FLC) and eliminates the chattering effect. The proposed control algorithm is applied to a DFIG where the stator is directly connected to the grid and the rotor is connected to a three-level converter structure NPC to suppress low level harmonics, higher frequencies will be filtered out by the machine. Second goal of this paper is to extract a maximum of power; the rotor side converter is controlled by using a stator flux-oriented strategy. The decoupling created by the control between active and reactive stator power allows keeping the power factor close to unity. Simulation results show that the wind turbine can operate at its optimum energy for a wide range of wind speed. Both simulation and validation results show effectiveness of the proposed control strategy is in terms of power regulation. Moreover, the fuzzy sliding mode approach is arranged so as to reduce the chattering produced in the generated power that could lead to increased mechanical stress because of strong torque variations.DOI: http://dx.doi.org/10.11591/ijpeds.v3i4.4072

Page 2 of 2 | Total Record : 12


Filter by Year

2013 2013


Filter By Issues
All Issue Vol 16, No 4: December 2025 Vol 16, No 3: September 2025 Vol 16, No 2: June 2025 Vol 16, No 1: March 2025 Vol 15, No 4: December 2024 Vol 15, No 3: September 2024 Vol 15, No 2: June 2024 Vol 15, No 1: March 2024 Vol 14, No 4: December 2023 Vol 14, No 3: September 2023 Vol 14, No 2: June 2023 Vol 14, No 1: March 2023 Vol 13, No 4: December 2022 Vol 13, No 3: September 2022 Vol 13, No 2: June 2022 Vol 13, No 1: March 2022 Vol 12, No 4: December 2021 Vol 12, No 3: September 2021 Vol 12, No 2: June 2021 Vol 12, No 1: March 2021 Vol 11, No 4: December 2020 Vol 11, No 3: September 2020 Vol 11, No 2: June 2020 Vol 11, No 1: March 2020 Vol 10, No 4: December 2019 Vol 10, No 3: September 2019 Vol 10, No 2: June 2019 Vol 10, No 1: March 2019 Vol 9, No 4: December 2018 Vol 9, No 3: September 2018 Vol 9, No 2: June 2018 Vol 9, No 1: March 2018 Vol 8, No 4: December 2017 Vol 8, No 3: September 2017 Vol 8, No 2: June 2017 Vol 8, No 1: March 2017 Vol 7, No 4: December 2016 Vol 7, No 3: September 2016 Vol 7, No 2: June 2016 Vol 7, No 1: March 2016 Vol 6, No 4: December 2015 Vol 6, No 3: September 2015 Vol 6, No 2: June 2015 Vol 6, No 1: March 2015 Vol 5, No 4: 2015 Vol 5, No 3: 2015 Vol 5, No 2: 2014 Vol 5, No 1: 2014 Vol 4, No 4: December 2014 Vol 4, No 3: September 2014 Vol 4, No 2: June 2014 Vol 4, No 1: March 2014 Vol 3, No 4: December 2013 Vol 3, No 3: September 2013 Vol 3, No 2: June 2013 Vol 3, No 1: March 2013 Vol 2, No 4: December 2012 Vol 2, No 3: September 2012 Vol 2, No 2: June 2012 Vol 2, No 1: March 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue