International Journal of Power Electronics and Drive Systems (IJPEDS)
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Articles
30 Documents
Search results for
, issue
"Vol 7, No 2: June 2016"
:
30 Documents
clear
Multi-objective Optimization Based Design of High Efficiency DC-DC Switching Converters
Angelo Ambrisi;
Massimiliano de Magistris;
Raffaele Fresa
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 2: June 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (556.858 KB)
|
DOI: 10.11591/ijpeds.v7.i2.pp379-386
In this paper we explore the feasibility of applying multi objective stochastic optimization algorithms to the optimal design of switching DC-DC converters, in this way allowing the direct determination of the Pareto optimal front of the problem. This approach provides the designer, at affordable computational cost, a complete optimal set of choices, and a more general insight in the objectives and parameters space, as compared to other design procedures. As simple but significant study case we consider a low power DC-DC hybrid control buck converter. Its optimal design is fully analyzed basing on a Matlab public domain implementations for the considered algorithms, the GODLIKE package implementing Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Simulated Annealing (SA). In this way, in a unique optimization environment, three different optimization approaches are easily implemented and compared. Basic assumptions for the Matlab model of the converter are briefly discussed, and the optimal design choice is validated “a-posteriori” with SPICE simulations.
Estimation of Excitation Capacitance Requirement of an Isolated Multi-phase Induction Generator for Power Generation
Alok Kumar Mohanty;
K B Yadav
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 2: June 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (523.208 KB)
|
DOI: 10.11591/ijpeds.v7.i2.pp561-567
Self Excited induction generators are used in remote places for electrical power generation from both conventional as well as non-conventional sources. An Induction generator can operate as a capacitor excited machine provided the machine is driven beyond synchronous speed and a suitable capacitor is connected across its terminals. In this paper a technique has been proposed to estimate the values of excitation capacitances to maintain desired terminal voltages in a multi-phase induction generator. A mathematical model using nodal admittance technique of a six-phase induction generator has been analyzed. Genetic algorithm technique is applied here to obtain the unknown parameters and the capacitance requirements to obtain desired terminal voltages under various operating conditions.
Enhanced Torque Control and Reduced Switching Frequency in Direct Torque Control Utilizing Optimal Switching Strategy for Dual-Inverter Supplied Drive
M. Khairi Rahim;
Auzani Jidin;
Tole Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 2: June 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (851.177 KB)
|
DOI: 10.11591/ijpeds.v7.i2.pp328-339
Direct Torque Control (DTC) of induction machine has received wide acceptance in many adjustable speed drive applications due to its simplicity and high performance torque control. However, the DTC using a common two-level inverter poses two major problems such as higher switching frequency (or power loss) and larger torque ripple. These problems are due to inappropriate voltage vectors which are selected among a limited number of voltage vectors available in two-level inverter. The proposed research aims to formulate an optimal switching strategy using Dual-Inverter Supplied Drive for high performances of DTC. By using dual-inverter supplied, it provides greater number of voltage vectors which can offer more options to select the most appropriate voltage vectors. The most appropriate voltage vectors should able to produce minimum torque slope but sufficient to satisfy torque demands. The identification is accomplished by using an equation of rate of change of torque which is derived from the induction machine equations. The proposed strategy also introduces a block of modification of torque error status which is responsible to modify the status such that it can determine the most optimal voltage vectors from a look-up table, according to motor operating conditions. The improvements obtained are as follows; 1) minimization of switching frequency (reduce power loss), and 2) reduction of torque ripple. Some improvements obtained in the proposed strategy were verified via experimentations.
Control of DFIG Stator Voltage on Autonomous Micro Hydro Power Plant
Feri Yusivar;
Nanda Avianto Wicaksono;
Aries Subiantoro;
Ridwan Gunawan
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 2: June 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (346.049 KB)
|
DOI: 10.11591/ijpeds.v7.i2.pp498-508
An autonomous micro hydro power plant was proposed to utilize the small hydro power potency as a run-of-river. It consisted of a PMSG, a DFIG, and a converter and should be operated in the off-grid configuration. In a previous research, the DFIG stator voltages couldn’t be controlled. In this paper, the novel control algorithm that is able to maintain the DFIG stator voltages of the autonomous micro hydro power plant in the off-grid configuration is proposed. The control algorithm was proposed to use the actual DFIG stator voltages and currents as feedback signals. The controller was tested by varying three input signals, i.e. the DC-link voltage, the DFIG stator voltage reference, and the external stator load which simulated the off-grid configuration. The result of the simulation showed that the DFIG stator voltages could be controlled and were always in accordance with the reference.
A New Structure for Sen Transformer Using Three Winding Linear Transformer
Chia Lailypour;
Murteza Farsadi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 2: June 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (420.884 KB)
|
DOI: 10.11591/ijpeds.v7.i2.pp440-449
In this paper a new structure for "Sen" transformer is introduced, by using three winding transformers with neutral point in order to use negative value of compensating voltage. Combination of taps will be adjusted by a novel algorithm, to control the required active and reactive powers, separately. This paper tries to focus on three parts. First of all there is an introduction on the concept of ST structure what comes next is a try to work on power flow control by using PI controllers and an algorithm to find the best and efficient combination of taps, finally proposed idea and algorithm will be implement on a practical system. Implementation of the system consist of two separated and related parts. The first one is about transmission line and Sen Transformer and the interaction between them. The second part is programing codes that adjust taps for required active and reactive powers.
Single-Switch Soft-Switched Boost Power Factor Corrector for Modular Applications
Tomas A. Gonzalez;
Daniel O. Mercuri;
Hernan E. Tacca;
Maximo E. Pupareli
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 2: June 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1330.534 KB)
|
DOI: 10.11591/ijpeds.v7.i2.pp279-293
Modern dc power supplies provide power factor correction but the classical two-stage approach, using hard-switched preregulators, has detrimental effects on efficiency and reliability, particularly for high power applications. With some circuit modifications and the addition of a few magnetic components, diodes and capacitors, we have turned a classical boost power factor corrector into a high efficiency soft-switched version. The proposed converter turns on its single switch with zero current and turns it off with zero voltage. In this paper we explain the proposed changes, we study the waveforms and equations and we verify them with an experimental prototype. We also show how the converter can be used for modular single- and three-phase high power applications.
Design of Hollow-Rotor Brushless DC Motor
Raja Nor Firdaus Raja Othman;
Farina Sulaiman;
Suhairi Rizuan;
Kasrul Abdul Karim;
Auzani Jidin;
Tole Sutikno;
Norhisam Misron
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 2: June 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (2116.776 KB)
|
DOI: 10.11591/ijpeds.v7.i2.pp387-396
This paper discusses about design of hollow-rotor Brushless DC (BLDC) motor. A conventional BLDC motor has more leakage flux circling at the end of the permanent magnet that will limit torque. To overcome this problem, a new BLDC model known as hollow-rotor is proposed. The objective of this research is to design a hollow-rotor motor that will have higher torque density compared to conventional BLDC motor using Finite Element Method (FEM). In addition, performance analysis of the proposed hollow-rotor has also been carried out. For validation, the result of FEM is compared with the measurement result. It shows that, the simulation result has good agreement with the measurement result. For comparison, hollow-rotor shows higher torque density compared to conventional BLDC motor. As a conclusion, this paper provides guidelines and analysis in designing high torque hollow-rotor motor.
Predictive Control for Reduced Structure Multilevel Converters: Experimenting on a Seven Level Packed U-Cell
Adel Nazemi;
Omid Salari;
Mohammad Tavakoli Bina;
Masoud Kazemi;
Bahman Eskandari
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 2: June 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1406.993 KB)
|
DOI: 10.11591/ijpeds.v7.i2.pp568-582
Recently, a branch of multilevel converters is emerged, in which their ‘reduced structure’ topologies use lower number of devices compared to the available topologies. To get a cost efficient converter, lower number of components as well as high quality waveforms, multilevel converters with a ‘reduced structure’ (MCRS) are suitable for high/medium power systems. Also, utilizing the fast microprocessors available today, applications of predictive control in power converters are of very powerful and attractive alternatives to classical controllers. This paper proposes a finite control set model-based predictive control (FCS-MPC) for load current regulation and capacitor voltage balancing for a typical MCRS. A case study considered, three-phase seven level packed U-cell (PUC), which is among reduced structure multilevel converters. A discrete model of the system is derived, and a predictive model-based control is developed according to this model in order to predict the future behavior of the system for all possible switching states; then, the switching state that optimized the cost function is selected. The feasibility of the proposed FCS-MPC strategy for a seven level PUC is evaluated based on simulations with MATLAB/ SIMULINK. Moreover, experimental validation of the proposed control system on a 5 kVA PUC is examined through DSP implementation.
FPGA Based Design and Validation of Asymmetrical Reduced Switch Multilevel Inverter
C Bharatiraja;
Harshavardhan Reddy;
Sunkavalli Satya Sai Suma;
N SriRamsai
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 2: June 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (623.649 KB)
|
DOI: 10.11591/ijpeds.v7.i2.pp340-348
This paper proposes a new Asymmetrical multilevel inverter topology with reduced number of switches. This topology is superior to the existing multilevel inverter (MLI) configurations in terms of lower total harmonic distortion (THD) value and lower cost. The idea incorporates a new module setup comprising of four different voltage sources having voltage output levels in a specific ratio. The proposed topology uses a novel pulse width modulation (PWM) technique (as presented) to control the gating pulses. The operation is simulated using MATLAB/SIMULINK and its results are validated through FPGA Spartan 3 based hardware prototype inverter (using three voltage sources to produce a 7 level output, which may be extended to 15 level). The circuit complexity is drastically reduced and it is suitable for medium and high power applications. THD for the output is quite low when compared with the conventional inverter.
Fuzzy Logic Controller Based Bridgeless Isolated Interleaved Zeta Converter for LED Lamp Driver Application
Thenmozhi R;
Sharmeela C;
Natarajan P;
Velraj R
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 2: June 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (477.744 KB)
|
DOI: 10.11591/ijpeds.v7.i2.pp509-520
In recent times, High-Brightness Light Emitting Diodes (HB-LEDs) are developing rapidly and it is confirmed to be the future development in lighting not only because of their high efficiency and high reliability, however also because of their other exceptional features: chromatic variety, shock and vibration resistance, etc. In this paper, a Bridgeless (BL) Isolated Interleaved Zeta Converter is proposed for the purpose of reducing the diode failures or losses, the value of output ripples also gets decreased. The proposed BL isolated interleaved zeta converter operating in Discontinuous Conduction Mode (DCM) is used for controlling the brightness of LED Driver with inherent PFC at ac mains using single voltage sensor. The fuzzy logic controller (FLC) is used to adjust the Modulation Index of the voltage controller in order to improve the dynamic response of LED Lamp driver. Based on the error of converter output voltage, FLC is designed to select the optimum Modulation Index of the voltage controller. The proposed LED driver is simulated to achieve a unity power factor at ac mains for a wide range of voltage control and supply voltage fluctuations.