cover
Contact Name
Tae Jin Park
Contact Email
iaes.ijra@gmail.com
Phone
-
Journal Mail Official
iaes.ijra@gmail.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
IAES International Journal of Robotics and Automation (IJRA)
ISSN : 20894856     EISSN : 27222586     DOI : -
Core Subject : Engineering,
Robots are becoming part of people's everyday social lives and will increasingly become so. In future years, robots may become caretaker assistants for the elderly, or academic tutors for our children, or medical assistants, day care assistants, or psychological counselors. Robots may become our co-workers in factories and offices, or maids in our homes. The IAES International Journal of Robotics and Automation (IJRA) is providing a platform to researchers, scientists, engineers and practitioners throughout the world to publish the latest achievement, future challenges and exciting applications of intelligent and autonomous robots. IJRA is aiming to push the frontier of robotics into a new dimension, in which motion and intelligence play equally important roles. Its scope includes (but not limited) to the following: automation control, automation engineering, autonomous robots, biotechnology and robotics, emergence of the thinking machine, forward kinematics, household robots and automation, inverse kinematics, Jacobian and singularities, methods for teaching robots, nanotechnology and robotics (nanobots), orientation matrices, robot controller, robot structure and workspace, robotic and automation software development, robotic exploration, robotic surgery, robotic surgical procedures, robotic welding, robotics applications, robotics programming, robotics technologies, robots society and ethics, software and hardware designing for robots, spatial transformations, trajectory generation, unmanned (robotic) vehicles, etc.
Articles 470 Documents
Switched time delay control based on neural network for fault detection and compensation in robot Dihya, Maincer; Moufid, Mansour; Chemseddine, Boudjedir; Moussaab, Bounabi
IAES International Journal of Robotics and Automation (IJRA) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v10i2.pp91-103

Abstract

Fault detection in robotic manipulators is necessary for their monitoring and represents an effective support to use them as independent systems. This present study investigates an enhanced method for representation of the faultless system behavior in a robot manipulator based on a multi-layer perceptron (MLP) neural network learning model which produces the same behavior as the real dynamic manipulator. The study was based on generation of residue by contrasting the actual output of the manipulator with those of the neural network; Then, a time delay control (TDC) is applied to compensate the fault, in which a typical sliding mode command is used to delete the time delay estimate produced by the belated signal in order to obtain strong performances. The results of the simulations performed on a model of the SCARA arm manipulator, showed a good trajectory tracking and fast convergence speed in the presence of faults on the sensors. In addition, the command is completely model independent, for both TDC and MLP neural network, which represents a major advantage of the proposed command.
Performance evaluation of industrial ethernet protocols for real-time fault detection based adaptive observer in networked control systems with network communication constraints Herve, Samba Aime; Tamtsia Aurelien, Yeremou; Nneme Leandre, Nneme
IAES International Journal of Robotics and Automation (IJRA) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v10i3.pp261-274

Abstract

In this paper, the performance evaluation of industrial ethernet (EtherNet/IP, EtherCAT and PROFINET IRT) networks has been studied for choosing the right protocol in real-time fault detection based adaptive sliding mode observer in networked control systems (NCSs) under time network-induced delays, stochastic packet losses, access constraints and bounded disturbances. An adaptive sliding-mode observer based fault detection is presented. The dynamic hydroelectric power plant model is used to verify the effectiveness of the proposed method based on TrueTime and Matlab/ Simulink, corroborated our predictions that an ethernet for control automation technology (EtherCAT) protocol would be more appropriate to reduce the false alarm rate and increasing the efficiency of the remote control of industrial hydroelectric power plant.
Internet of Things-based home automation, energy management and smart security system Bature, U. I.; Tahir, N. M.; Abubakar, A. K.; Makama, A.
IAES International Journal of Robotics and Automation (IJRA) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v10i1.pp32-40

Abstract

Objects can easily be remotely sensed, monitored and controlled when home is automated using the Internet of Things (IoT); this will give room for direct integration of the real world into computerized systems. Energy consumption is defined as the degree of the amount of power expended by a given load in an electric circuit. Nowadays, inefficient techniques used in monitoring and control of power consuming devices has contributed immensely in the high rate of power consumption in our homes, institutions, business places, and marketplaces. The design and implementation of an IoT-based home automation, energy management and smart security system has been proposed in this paper. The components used in the development of the system unit include an ESP8266 Wi-Fi component and the universal Arduino imbedded controller. The proposed scheme is aimed at assisting and supporting an efficient usage of power, and by doing so, power consumption as well as the risk of fire outbreaks will be greatly reduced to the barest minimal. The capability of remotely monitoring and controlling both electrical and electronic appliances via a web application is the main feature of the proposed scheme. The scheme provides better efficiency and accuracy as well as economic benefits.
Application of DPC and DPC-GA to the dual-rotor wind turbine system with DFIG Benbouhenni, Habib
IAES International Journal of Robotics and Automation (IJRA) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v10i3.pp224-234

Abstract

The work presents the dual-rotor wind energy conversion system (DRWECS) with a direct driven doubly-fed induction generator (DFIG). The system consists of a dual-rotor wind turbine (DRWT) with a DFIG, the grid side converter (GSC), and the machine side converter (MSC). To command the MSC, the direct power command (DPC) based on genetic algorithm (GA) and classical pulse width modulation (PWM) has been applied. To achieve the maximum power from the DRWT, the maximum powe point tracking (MPPT) technique has been used. The performed simulation studies confirmed the high performances of the DPC-GA contro method.
Future trends in mechatronics Nnodim, Chiebuka T.; Arowolo, Micheal O.; Agboola, Blessing D.; Ogundokun, Roseline O.; Abiodun, Moses K.
IAES International Journal of Robotics and Automation (IJRA) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v10i1.pp24-31

Abstract

Presently, the move towards a more complex and multidisciplinary system development is increasingly important in order to understand and strengthen engineering approaches for the systems in the engineering field. This will lead to the effective and successful management of these systems. The scientific developments in computer engineering, simulation and modeling, electromechanical motion tools, power electronics, computers and informatics, micro-electro-mechanical systems (MEMS), microprocessors, and distributed system platforms (DSPs) have brought new challenges to industry and academia. Important aspects of designing advanced mechatronic products include modeling, simulation, analysis, virtual prototyping, and visualization. Competition on a global market includes the adaptation of new technology to produce better, cheaper, and smarter, scalable, multifunctional goods. Since the application area for developing such systems is very broad, including, for example, automotive, aeronautics, robotics or consumer products, and much more, there is also the need for flexible and adaptable methods to develop such systems. These dynamic interdisciplinary systems are called mechatronic systems, which refer to a system that possess synergistic integration of Software, electronic, and mechanical systems. To approach the complexity inherent in the aspects of the discipline, different methods and techniques of development and integration are coming from the disciplines involved. This paper will provide a brief review of the history, current developments and the future trends of mechatronics in general view.
A discrete-time terminal sliding mode controller design for an autonomous underwater vehicle Sarif, Nira Mawangi; Ngadengon, Rafidah; Kadir, Herdawatie Abdul; Jalil, Mohd Hafiz A.; Abidi, Khalid
IAES International Journal of Robotics and Automation (IJRA) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v10i2.pp104-113

Abstract

Autonomous underwater vehicle (AUV) are underwater robotic devices intended to explore hostiles territories in underwater domain. AUVs research gaining popularity among underwater research community because of its extensive applications and challenges to overcome unpredictable ocean behavior. The aim of this paper is to design discrete time terminal sliding mode control (DTSMC) reaching law-based employed to NPS AUV II purposely to improve the dynamic response of the closed loop system. This is accomplished by introducing a nonlinear component to sliding surface design in which the system state accelerated, and chattering effect is suppressed. The nonlinear component consist of fractional power is to ensure steeper slope of the sliding surface in the vicinity of the equilibrium point which lead to quicker convergence speed. Thus, the chattering effect in the control action suppressed as the convergence of the system state accelerated. The stability of the control system is proven by using Sarpturk analysis and the performance of the DTSMC is demonstrated through simulation study. The performance of DTSMC is benchmarked with DSMC and PID controller
A simulated risk assessment of human-robot interaction in the domestic environment Kaonain, Tamanna E; Abdul Rahman, Mohd Azizi; Mohammed Ariff, Mohd Hatta; Mondal, Kuheli
IAES International Journal of Robotics and Automation (IJRA) Vol 9, No 4: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v9i4.pp300-310

Abstract

In human-robot interaction, the use of collaborative robots or cobots in many industries is of major importance to researchers in human-robot interaction (HRI). The interaction between human robot carries several challenges, the greatest being the risk of human injury. In addition to reducing the proximity between robots and humans, increased difficulty of human-robot encounters raises the likelihood of accidents only. This paper proposes a virtual collaborative robot in the simulated non-industrial workspace. The safety during human-robot interaction using simulation software was investigated by measuring the risks for planning and control. A reactive robot controller was formulated to minimize the risk during human-robot interaction. A Gazebo software is used in this article, written in Python language, to replicate complex environments that a robot can face. This paper also investigated the robot’s speed. It can be reduced before a collision with a human about to happen, and it minimized the risk of the collision or reduced the damage of the risk. After the successful simulation, this can be applied to the real robot in a practical domestic environment.
Design and implementation of automatic painting mobile robot Muneer, Amgad; Dairabayev, Zhan
IAES International Journal of Robotics and Automation (IJRA) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v10i1.pp68-74

Abstract

Wall painting is a repetitive, stressful, and hazardous process that makes it an ideal automation case. In the automotive industry, painting had been automated but not yet for the construction industry. However, there is a strong need for a mobile robot that can move to paint residential interior walls. In this study, we aim to design and implement an automatic painting mobile robot. The conceptual design of the proposed wall painting robot consisting paint mechanism with a spray gun and ultrasonic sensor. The spray gun is attached to a pulley mechanism that has linear motion. The ultrasonic sensor is used to detect the spray gun when it reached a certain limit. The DC motor rotates clockwise and counterclockwise based on the ultrasonic sensor condition made. The experimental results indicate that the robot was able to paint the walls smoothly vertically, and horizontally. The spraying gun structure's speed is at a tolerable speed of 0.07 m/s, which could be increased, but to provide high-quality painting without any gaps, the current speed was selected as the most suitable, without any harm to the working process.
Portable wireless node design for smart agricultural system based on Internet of Things Al Tahtawi, Adnan Rafi; Andika, Erick; Harjanto, Wildan Nurfauzan
IAES International Journal of Robotics and Automation (IJRA) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v10i1.pp1-9

Abstract

This paper presents a pair of portable wireless nodes for a smart agricultural system to control and monitor the agricultural parameters based on Internet of Things (IoT). This system utilizes low-cost wireless communication through an nRF24L01 module between the sensor node and the controller node. The sensor node is placed on the agricultural area with a Li-Ion battery as a power supply, while the controller node is placed at the control and monitoring station. On the sensor node, there is a YL-69 soil moisture sensor and DS18B20 temperature sensor, while in the controller node there is a relay that can set watering on/off condition. In the controller node, there is also an ESP8266 WiFi module that serves to send data to the internet cloud for user monitoring. Both hardware nodes are built in small and portable size. The experimental result shows that the sensor node can transmit soil moisture and temperature data via RF wireless communication to the controller node. Watering is done automatically based on the condition of sensor values. In addition, this system can also be monitored through a website interface, so the users can easily find out the condition of their plant as long as there is internet access.
Technical study of the effect of laser engraving using uArm swift pro robot Mondal, Soumen; Dutta, Ajoy Kumar
IAES International Journal of Robotics and Automation (IJRA) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v10i3.pp182-191

Abstract

Laser engraving is the most non - traditional and efficient working method in the machining of materials of different geometry as compared to conventional methods. The main objective of this study is to determine the impact of uArm swift pro robot operated laser engraving process on a wooden pitch board piece. However, the robot was connected with uArm Studio 1.1.22 software to perform laser engraving operation. For this purpose the effect of process parameters like spot diameter and depth of penetration were investigated with different working length of the robot end effector, measured from wooden pitch board base. Experimental observation method was used to investigate the formation of deep and light engraving pattern on the pitch board surface by measuring penetration depth and spot diameter in suitable condition. The result obtained from the experiment and statistical parameters showed a new dimension to find a suitable working length of the robot assisted laser nozzle where the laser penetration effect was clearly perceptible for the wooden material.

Filter by Year

2012 2025