cover
Contact Name
Imam Much Ibnu Subroto
Contact Email
imam@unissula.ac.id
Phone
-
Journal Mail Official
ijai@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN : 20894872     EISSN : 22528938     DOI : -
IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like genetic algorithm, ant colony optimization, etc); reasoning and evolution; intelligence applications; computer vision and speech understanding; multimedia and cognitive informatics, data mining and machine learning tools, heuristic and AI planning strategies and tools, computational theories of learning; technology and computing (like particle swarm optimization); intelligent system architectures; knowledge representation; bioinformatics; natural language processing; multiagent systems; etc.
Arjuna Subject : -
Articles 1,722 Documents
A review of upper limb robot assisted therapy techniques and virtual reality applications Habiba Abdelsalam Ibrahim; Hossam Hassan Ammar; Raafat Shalaby
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 2: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i2.pp613-623

Abstract

Impairments in the sensorimotor system negatively impact the ability of individuals to perform daily activities autonomously. Upper limb rehabilitation for stroke survivors and cerebral palsy (CP) children is essential to enhance independence and quality of life. Robot assisted therapy has been a bright solution in the last two decades to promote the recovery process for neurological disorders patients. Nevertheless, defining the optimum intervention of robot assisted therapy (RAT) in different cases is not clear yet. With this aim, the presented study reviewed the current literature on RAT protocols for upper limb impairments and the effects of RAT on recovery outcomes. A literature search was conducted using different search engines, reviews, and studies. This study presents an overview of fourteen robotic devices used in the rehabilitation field and seventeen clinical trials using commercially available devices during the last three years. A discussion about reaching an efficient rehabilitation process based on different aspects such as clinical setting and training modes has been introduced. This review identifies the limitations of RAT to lay the foundation for more effective neuromotor disorders rehabilitation. Finally, using virtual reality (VR) as an assisting feature in RAT improves the whole process of recovering motor functionality.
Vehicles detection and counting based on internet of things technology and video processing techniques Marwa A. Marzouk; Amr Abd El Azeem
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 2: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i2.pp405-413

Abstract

Recent studies have proven that vehicle tracking and detection play an important role in traffic density monitoring. Traffic overcrowding can be effectively controlled if the number of vehicles expected to pass through a congested intersection can be predicted ahead of time. To overcome such impact of traffic congestion the proposed system presents a framework, using motion detection algorithms and “ThingSpeak” internet of things (IoT) platform which is used in to calculate traffic density, the proposed system capturing video with wireless internet protocol (IP) cameras and broadcasting it to the server where motion detection algorithms as background subtraction are used to obtain a quick overview of traffic density, To save cost and improve the solution, the suggested system utilizes image processing techniques as well as the IoT analytic platform “ThingSpeak” to monitor traffic density. Finally, the suggested method is used to manage traffic flow and avoid traffic crowded. The results of the studies show that the integration of IoT-based technologies with a modified background subtraction technique is effective. This method might be enhanced further to detect vehicles that break traffic laws. We may also improve this system by detecting the presence of emergency vehicles (including an ambulance or fire truck) and granting priority to those cars.
Design of the use of chatbot as a virtual assistant in banking services in Indonesia Bhakti Prabandyo Wicaksono; Amalia Zahra
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 1: March 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i1.pp23-33

Abstract

A chatbot is a computer program designed to simulate an interactive communication to user (human) via text, audio, or video. Currently several banks in Indonesia have adopted chat technology in customer service. The application of artificial intelligence in customer service aims to prepare banks for the challenges of industry banking 4.0. In addition, it is also to solve problems currently faced by customer service. Implementing chatbot platform in banking in Indonesia is not just plug and play, although there are quite a lot of chatbot platforms available, including Rasa Platform, Botika Platform, and Kata.ai Platform. However, this study only evaluates two chatbot platforms, namely Rasa and Botika, where the two platforms are considered not yet able to be immediately adopted by banks. This is because the application of banking technology in Indonesia must refer to regulatory regulations, including those related to environmental needs, language, speed, and accuracy to understand the intent of users. Hence, research is needed to decide which chatbot platform can be implemented in the banking industry without violating regulatory regulations. From the results of evaluations conducted using the usability and hedonic motivation system adoption system (HMSAM) methods, it is found that users prefer Botika platform to be implemented in the banking industry.
A proposed architecture for convolutional neural networks to detect skin cancers Maher Ahmed, Hasan; Younis Kashmola, Manar
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 2: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i2.pp485-493

Abstract

The goal of the research paper is to design and development of a computer-based system for the segmentation and classification of malignant skin diseases and a comparison between the accuracy of their detection, as two malignant diseases of skin diseases were detected. Namely, basal cell carcinoma and melanoma separately with images of nevus, and the images were collected from the ISIC 2020 archive group, as the total, The images used: 17,846 images include 3,008 images of basal cell carcinoma (BCC), 5,272 images of melanoma, and 9,566 images of a nevus, and validation data contains 20% of the images used which are not classified and randomly taken from the set of images, and the final test data contains 1,500 anonymous images. An architecture for the convolutional neural network technology in deep learning has been proposed that consists of a set of layers for processing. Processing raw input images for a group of pre-treatment transformations, the data augmentation process, so the number of images used became 86094 images of nevus, 27,072 images of BCC, and 47,448 images of melanoma. Through the detection process, the classification and detection accuracy of BCC was 98.25%, which is higher than the classification accuracy of melanoma is 91.61%.
Identify tooth cone beam computed tomography based on contourlet particle swarm optimization Hiba Adreese Younis; Dhafar Sami Hammadi; Ansam Nazar Younis
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 1: March 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i1.pp397-404

Abstract

In this paper certain type of biometric measurements has been used to identify the cone beam computed tomography (CBCT) radiograph of the subject in a fast and reliable way. Where the CBCT radiograph of a person is used as a data and stored in database for later use in a person’s recognition process. The aim of this research is to use various stages of the preprocessing operations of the CBCT radiograph to obtain the clearest possible image that will help us in the identification process more easily and precisely. The contourlet transformation was used for feature extraction of each particular CBCT image and the results were processed by a new hybrid particle swarm optimization (PSO) named "contourlet PSO" algorithm (CPSO), which is faster and produce more precise (due to apply contourlet algorithm) than traditional PSO. The proposed algorithm (CPSO) gave a detection ratio of 98% after its application on 100 CBCT radiographs.
Effective predictive modelling for coronary artery diseases using support vector machine Kuncahyo Setyo Nugroho; Anantha Yullian Sukmadewa; Angga Vidianto; Wayan Firdaus Mahmudy
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 1: March 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i1.pp345-355

Abstract

Coronary artery disease (CAD) is a category of cardiovascular disease that causes the highest mortality rate in the world. CAD occurs due to plaque build-up on the walls of the arteries that supply blood to the heart and other organs of the body. To control the mortality rate, a practical model that is capable of predicting CAD is needed. Machine learning approaches have been used in solving various problems in various domains, including biomedicine. However, real-world data often has an unbalanced class distribution that can interfere with classifier performance. In addition, data has many features to process. This study focuses on effective modeling capable of predicting CAD using feature selection to handle high dimensional data and feature resampling to handle unbalanced data. Feature selection is very effective by eliminating irrelevant features from the training data. Hyperparameter tuning is also done to find the best combination of parameters in support vector machines (SVM). Our results show that the SVM cross-validated ten times has a more accurate training result. Furthermore, the grid search on SVM cross-validated ten times had more accurate training model results and achieved 88% accuracy on the test data.
Language lexicons for Hindi-English multilingual text processing Mohd Zeeshan Ansari; Tanvir Ahmad; Mirza Mohd Sufyan Beg; Noaima Bari
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 2: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i2.pp641-648

Abstract

Language identification (LI) in textual documents is the process of automatically detecting the language contained in a document based on its content. The present language identification techniques presume that a document contains text in one of the fixed set of languages. However, this presumption is incorrect when dealing with multilingual document which includes content in more than one possible language. Due to the unavailability of standard corpora for Hindi-English mixed lingual language processing tasks, we propose the language lexicons, a novel kind of lexical database that augments several bilingual language processing tasks. These lexicons are built by learning classifiers over English and transliterated Hindi vocabulary. The designed lexicons possess condensed quantitative characteristics which reflect their linguistic strength in respect of Hindi and English language. On evaluating the lexicons, it is observed that words of the same language tend to cluster together and are separable over language classes. On comparing the classifier performance with existing works, the proposed lexicon models exhibit the better performance.
Machine learning algorithms for electrical appliances monitoring system using open-source systems Viet Hoang Duong; Nam Hoang Nguyen
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 1: March 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i1.pp300-309

Abstract

Two main methods to minimize the impact of electricity generation on the environment are to exploit clean fuel resources and use electricity more effectively. In this paper, we aim to change the user's electricity usage by providing feedback about the electrical energy consumed by each device. The authors introduced two devices, load monitoring device (LMD) and activity monitoring device (AMD). The function of the LMD is to provide feedback on the operating status and energy consumption of electrical appliances in a home, which will help people consume electrical energy more efficiently. The parameters of LMD are used to predict the on/off state of each electrical appliance thanks to machine learning algorithms. AMD with audio sensors can assist LMD to distinguish electrical devices with the same or varying power over time. The system was tested for three weeks and achieved a state prediction accuracy of 93.60%.
Solving a traveling salesman problem using meta-heuristics Anahita Sabagh Nejad; Gabor Fazekas
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 1: March 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i1.pp41-49

Abstract

In this article, we have introduced an advanced new method of solving a traveling salesman problem (TSP) with the whale optimization algorithm (WOA), and K-means which is a partitioning-based algorithm used in clustering. The whale optimization algorithm first was introduced in 2016 and later used to solve a TSP problem. In the TSP problem, finding the best path, which is the path with the lowest value in the fitness function, has always been difficult and time-consuming. In our algorithm, we want to find the best tour by combining it with K-means which is a clustering method. In other words, we want to divide our problem into smaller parts called clusters, and then we join the clusters based on their distances. To do this, the WOA algorithm, TSP, and K-means must be combined. Separately, the WOA-TSP algorithm which is an unclustered algorithm is also implemented to be compared with the proposed algorithm. The results are shown through some figures and tables, which prove the effectiveness of this new method.
Indonesian part of speech tagging using maximum entropy markov model on Indonesian manually tagged corpus Denis Eka Cahyani; Winda Mustikaningtyas
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 1: March 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i1.pp336-344

Abstract

This research discusses the development of a part of speech (POS) tagging system to solve the problem of word ambiguity. This paper presents a new method, namely maximum entropy markov model (MEMM) to solve word ambiguity on the Indonesian dataset. A manually labeled “Indonesian manually tagged corpus” was used as data. Furthermore, the corpus is processed using the entropy formula to obtain the weight of the value of the word being searched for, then calculating it into the MEMM Bigram and MEMM Trigram algorithms with the previously obtained rules to determine the part of speech (POS) tag that has the highest probability. The results obtained show POS tagging using the MEMM method has advantages over the methods used previously which used the same data. This paper improves a performance evaluation of research previously. The resulting average accuracy is 83.04% for the MEMM Bigram algorithm and 86.66% for the MEMM Trigram. The MEMM Trigram algorithm is better than the MEMM Bigram algorithm.

Page 45 of 173 | Total Record : 1722


Filter by Year

2012 2025


Filter By Issues
All Issue Vol 14, No 6: December 2025 Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 4: December 2024 Vol 13, No 3: September 2024 Vol 13, No 2: June 2024 Vol 13, No 1: March 2024 Vol 12, No 4: December 2023 Vol 12, No 3: September 2023 Vol 12, No 2: June 2023 Vol 12, No 1: March 2023 Vol 11, No 4: December 2022 Vol 11, No 3: September 2022 Vol 11, No 2: June 2022 Vol 11, No 1: March 2022 Vol 10, No 4: December 2021 Vol 10, No 3: September 2021 Vol 10, No 2: June 2021 Vol 10, No 1: March 2021 Vol 9, No 4: December 2020 Vol 9, No 3: September 2020 Vol 9, No 2: June 2020 Vol 9, No 1: March 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 More Issue