cover
Contact Name
Imam Much Ibnu Subroto
Contact Email
imam@unissula.ac.id
Phone
-
Journal Mail Official
ijai@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN : 20894872     EISSN : 22528938     DOI : -
IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like genetic algorithm, ant colony optimization, etc); reasoning and evolution; intelligence applications; computer vision and speech understanding; multimedia and cognitive informatics, data mining and machine learning tools, heuristic and AI planning strategies and tools, computational theories of learning; technology and computing (like particle swarm optimization); intelligent system architectures; knowledge representation; bioinformatics; natural language processing; multiagent systems; etc.
Arjuna Subject : -
Articles 1,722 Documents
Artificial Neural Network for Healthy Chicken Meat Identification Fajar Yumono; Imam Much Ibnu Subroto; Sri Arttini Dwi Prasetyowati
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 7, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (366.322 KB) | DOI: 10.11591/ijai.v7.i1.pp63-70

Abstract

Indonesia is the country with the largest number of Muslims in the world. Every Muslim is taught to consume thoyyiban halal meat or healthy chicken because it is slaughtered in the right way and stored in a good way too. But the reality in the market of many chicken meat on the market can not meet that criteria. Identification of healthy chicken meat can be done with laboratory experiments, but that is not simple and takes time. This experiment offers a cheaper, faster approach, with very high accuracy. The experimental approach is based on color and texture analysis on 5 types of meat quality based on healthy value. Color analysis was performed using artificail neural network (ANN) while texture analysis used Canny edge detection. Experimental results show that the color histogram approach with ANN is better than the texture approach, ie 94% versus 66%. It can be concluded that the freshness of a chicken does not have much effect on the texture of the meat but it has an effect on the color change in the meat.
Segmentation and Recognition of Arabic Printed Script Fakir Mohamed Fakir
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 2, No 1: March 2013
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (387.43 KB)

Abstract

In this work we present a method for the recognition of Arabic printed script. The major problem of the automatic reading of cursive writing is a segmentation of script to isolate characters. The recognition process consists of four phases: Preprocessing, segmentation, feature extraction and the recognition.In the preprocessing, the image is scanned and smoothed. The correction of skew lines is done by using Hough transform . In the second phase, the text is segmented into lines, words or parts of words and each word into characters based on the principle of projection of the histogram. Features such as:  density, profile, Hu moments and histogram are used to classifier the characters based on the Neural network.DOI: http://dx.doi.org/10.11591/ij-ai.v2i1.1236 
Multilayer neural network synchronized secured session key based encryption in wireless communication Arindam Sarkar
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1174.09 KB) | DOI: 10.11591/ijai.v8.i1.pp44-53

Abstract

In this paper, multilayer neural network synchronized session key based encryption has been proposed for wireless communication of data/information. Multilayer perceptron transmitting systems at both ends accept an identical input vector, generate an output bit and the network are trained based on the output bit which is used to form a protected variable length secret-key. For each session, different hidden layer of multilayer neural network is selected randomly and weights or hidden units of this selected hidden layer help to form a secret session key. The plain text is encrypted through chaining, cascaded xoring of multilayer perceptron generated session key. If size of the final block of plain text is less than the size of the key then this block is kept unaltered. Receiver will use identical multilayer perceptron generated session key for performing deciphering process for getting the plain text. Parametric tests have been done and results are compared in terms of Chi-Square test, response time in transmission with some existing classical techniques, which shows comparable results for the proposed technique.
Extracting hidden patterns from dates' product data using a machine learning technique Mohammed Abdullah Al-Hagery
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (838.418 KB) | DOI: 10.11591/ijai.v8.i3.pp205-214

Abstract

Mining in data is an important step for knowledge discovery, which leads to extract new patterns from datasets. It is a widespread methodology that has the capability to help ministries, companies, and experts for diving into the data to find important insights and patterns to help them take suitable decisions. The farmers and marketers of the date product in the production regions lack to discover the most important characteristics of dates types from the economically, healthy, and the type of consumers point of view to achieve the highest profits by choosing the best types and the most consumed. The research objective is to extract interesting patterns from the dates’ product dataset, using Machine Learning, based on association rules generation. This, in turn, will support the farmers, and marketers to discover new features related to the production, consumption, and marketing processes. This research used a real dataset collected from KSA, Qassim region, which is the first region of cultivation of palm, that produces the best types of dates in the Arab region. The data preprocessed and analyzed by the Apriori algorithm. The results show important features and insights related to the health benefits of dates, production, its consumption, consumers types, and marketing. Consequently, these results can be employed, for instance, to encourage individuals to consume dates for their nutritional value and their important health benefits. Furthermore, the results encourage producers to focus on the production of preferable types and to improve the marketing policies of the other types.
Ontology Based RT-Delphi with Explanation Capabilities Ahmed Omran; Motaz Khorshid
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 3, No 2: June 2014
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (566.938 KB) | DOI: 10.11591/ijai.v3.i2.pp57-63

Abstract

Real-Time (RT) Delphi approach is widely used method for knowledge acquisition process. The current RT-Delphi approach ignores considering the unifying domain concepts and their attributes. This limitation can provide the contradiction of the domain experts' judgments and increasing misunderstandings when talking about specific topics. In addition, the current RT-Delphi ignores the explanation capabilities for consensus results, which it is vital for policy/decision makers to be more confidence. The core of this research is to develop ontology-based RT-Delphi with explanation capabilities. We applied the developed approach in to two crucial important case studies in Egypt, which are food security and water security.
Review of single clustering methods Nurshazwani Muhamad Mahfuz; Marina Yusoff; Zakiah Ahmad
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (435.105 KB) | DOI: 10.11591/ijai.v8.i3.pp221-227

Abstract

Clustering provides a prime important role as an unsupervised learning method in data analytics to assist many real-world problems such as image segmentation, object recognition or information retrieval. It is often an issue of difficulty for traditional clustering technique due to non-optimal result exist because of the presence of outliers and noise data. This review paper provides a review of single clustering methods that were applied in various domains. The aim is to see the potential suitable applications and aspect of improvement of the methods. Three categories of single clustering methods were suggested, and it would be beneficial to the researcher to see the clustering aspects as well as to determine the requirement for clustering method for an employment based on the state of the art of the previous research findings.
Classification of Power Quality Events Using Wavelet Analysis and Probabilistic Neural Network Pampa Sinha; Sudipta Debath; Swapan Kumar Goswami
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 5, No 1: March 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (859.4 KB) | DOI: 10.11591/ijai.v5.i1.pp1-12

Abstract

Power quality studies have become an important issue due to widespread use of sensitive electronic equipment in power system. The sources of power quality degradation must be investigated in order to improve the power quality. Switching transients in power systems is a concern in studies of equipment insulation coordination. In this paper a wavelet based neural network has been implemented to classify the transients due to capacitor switching, motor switching, faults, converter and transformer switching. The detail reactive powers for these five transients are determined and a model which uses the detail reactive power as the input to the Probabilistic neural network (PNN) is set up to classify the above mentioned transients. The simulation has been executed for an 11kv distribution system. With the help of neural network classifier, the transient signals are effectively classified.
Feature selection for DDoS detection using classification machine learning techniques Andi Maslan; Kamaruddin Malik Bin Mohamad; Feresa Binti Mohd Foozy
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 9, No 1: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (581.324 KB) | DOI: 10.11591/ijai.v9.i1.pp137-145

Abstract

Computer system security is a factor that needs to be considered in the era of industrial revolution 4.0, namely by preventing various threats to the system, as well as being able to detect and repair any damage that occurs to the computer system. DDoS attacks are a threat to the company at this time because this attack is carried out by making very large requests for a site or website server so that the system becomes stuck and cannot function at all. DDoS attacks in Indonesia and developed countries always increase every year to 6% from only 3%. To minimize the attack, we conducted a study using Machine Learning techniques. The dataset is obtained from the results of DDoS attacks that have been collected by the researchers. From the datasets there is a training and testing of data using five techniques classification: Neural Network, Naïve Bayes and Random Forest, KNN, and Support Vector Machine (SVM), datasets processed have different percentages, with the aim of facilitating in classifying. From this study it can be concluded that from the five classification techniques used, the Forest random classification technique achieved the highest level of accuracy (98.70%) with a Weighted Avg 98.4%. This means that the technique can detect DDoS attacks accurately on the application that will be developed.
Assessing State of the Art on Artificial Neural Network Paradigms for Level of Eutrophication Estimation of Water Bodies Tushar Anthwal; M K Pandey
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 5, No 4: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (321.656 KB) | DOI: 10.11591/ijai.v5.i4.pp135-142

Abstract

With growing power of computer and blend of intelligent soft wares, the interpretation and analytical capabilities of the system had shown an excellent growth, providing intelligence solutions to almost every computing problem. In this direction here we are trying to identify how different geocomputation techniques had been implemented for estimation of parameters on water bodies so as to identify the level of contamination leading to the different level of eutrophication. The main mission of this paper is to identify state-of-art in artificial neural network paradigms that are prevailing and effective in modeling and combining spatial data for anticipation. Among this, our interest is to identify different analysis techniques and their parameters that are mainly used for quality inspection of lakes and estimation of nutrient pollutant content in it, and different neural network models that offered the forecasting of level of eutrophication in the water bodies. Different techniques are analyzed over the main steps;-assimilation of spatial data, statistical interpretation technique, observed parameters used for eutrophication estimation and accuracy of resultant data.
Machine learning: the new language for applications Venkatsai Siddesh Padala; Kathan Gandhi; D. V. Pushpalatha
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (436.643 KB) | DOI: 10.11591/ijai.v8.i4.pp411-421

Abstract

Machine learning and artificial intelligence are becoming a significant influence on various research and commercial fields. This review attempts to equip the researchers and industrial practitioners with the knowledge of machine learning techniques and their applications in multiple fields. Challenges and future directions are also proposed, including data analysis suggestions, effective algorithms based on the situation, industrial implementation, organization’s risk tolerance, cost-benefit comparisons, and the future of machine learning techniques. Applications discussed in this paper range from technological development and health care to financial issues and sports analytics.

Page 9 of 173 | Total Record : 1722


Filter by Year

2012 2025


Filter By Issues
All Issue Vol 14, No 6: December 2025 Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 4: December 2024 Vol 13, No 3: September 2024 Vol 13, No 2: June 2024 Vol 13, No 1: March 2024 Vol 12, No 4: December 2023 Vol 12, No 3: September 2023 Vol 12, No 2: June 2023 Vol 12, No 1: March 2023 Vol 11, No 4: December 2022 Vol 11, No 3: September 2022 Vol 11, No 2: June 2022 Vol 11, No 1: March 2022 Vol 10, No 4: December 2021 Vol 10, No 3: September 2021 Vol 10, No 2: June 2021 Vol 10, No 1: March 2021 Vol 9, No 4: December 2020 Vol 9, No 3: September 2020 Vol 9, No 2: June 2020 Vol 9, No 1: March 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 More Issue