cover
Contact Name
Lalu Muhamad Jaelani
Contact Email
lmjaelani@gmail.com
Phone
-
Journal Mail Official
lmjaelani@gmail.com
Editorial Address
-
Location
Unknown,
Unknown
INDONESIA
Jurnal Penginderaan Jauh Indonesia
ISSN : -     EISSN : 26570378     DOI : -
Jurnal Penginderaan Jauh Indonesia (JPJI) adalah media komunikasi dan diseminasi hasil penelitian, kajian dan pemikiran terkait teori, sains, dan teknologi penginderaan jauh serta pemanfaatannya yang diterbitkan oleh Masyarakat Ahli Penginderaan Jauh Indonesia (MAPIN). Fokus jurnal mencakup penginderaan jauh untuk objek dipermukaan bumi, baik di darat, laut maupun atmosfer. JPJI terbit 2 kali setahun, pada bulan Februari dan Agustus.
Arjuna Subject : -
Articles 15 Documents
Analisis Data Sentinel-2 Untuk Mendukung Pariwisata Kawasan Wakatobi Artaningh, Febzi; Anggraini, Tania Septi; Sihotang, Elstri; Sakti, Anjar Dimara; Agustan, Agustan
Jurnal Penginderaan Jauh Indonesia Vol 2 No 2 (2020)
Publisher : Masyarakat Ahli Penginderaan Jauh Indonesia (MAPIN) /Indonesian Society of Remote Sensing (ISRS)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Sentinel-2 Data Analysis to Support Special Interest Tourism in the Wakatobi Region Abstract. Tourism has a role for power improvement of the regional economy; therefore, it is important to do a good plan, management, and monitoring the tourism areas for sustainable goals. Satellite-based remote sensing methods are proven reliable in getting area information effectively and regularly. The Sentinel-2 satellites monitoring land cover changes regularly thus that it can be used to analyze the environmental carrying capacity for tourism. Sentinel-2 data that consists of several scenes at two-time observations were processed by mosaicking and spectral color composite strategies. The Wakatobi coastal uniqueness was analyzed by the vegetation index method combined with tidal data. There are several regions that were indicated to have spectral changes over five months, with an area approximately 30,55 km2. These interesting objects have the potential to support tourism in the Wakatobi region.
Pemantauan Konsentrasi Gas SO2 di Sekitar Gunung Sinabung Menggunakan Citra Satelit Sentinel-5 Precursor Sihotang, Elstri; Artaningh, Febzi; Anggrainia, Tania Septi; Sakti, Anjar Dimara; Agustan, Agustan
Jurnal Penginderaan Jauh Indonesia Vol 2 No 2 (2020)
Publisher : Masyarakat Ahli Penginderaan Jauh Indonesia (MAPIN) /Indonesian Society of Remote Sensing (ISRS)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Monitoring of SO2 Gas Concentration Around Mount Sinabung Using Sentinel-5 Precursor Satellite Imagery Abstract. Mount Sinabung is a mountain type A that is still active. Mount Sinabung is located in North Sumatra Province, Karo Regency. Mount Sinabung eruption does affect not only the region but also the area around the mountain. One of the substances that were sprayed by the volcano during the outbreak was SO2 gas. SO2 gas is an essential parameter for determining air quality. SO2 gas is in the atmosphere through a natural process and anthropogenic process. The data of SO2 gas was obtained by utilizing the Sentinel-5P record results. Data Sentinel-5P was processed and analyzed to be able to determine the SO2 gas concentration in the area surrounding Mount Sinabung and also changes in the SO2 gas concentrations in several areas. In general, the highest SO2 gas concentration was at the crater of Mount Sinabung. However, on 22 July 2019, the SO2 gas concentrations in Deli Serdang Regency were higher, around 75% of SO2 gas concentrations in the crater area. This research may also indicate that Sentinel-5P data can be used to monitor gas in the atmosphere. Keywords: Mount Sinabung; Eruption; SO2; air quality; Sentinel-5P.
Analisis Perubahan Vegetasi dengan Data Sentinel-2 menggunakan Google Earth Engine Julianto, Fandi Dwi; Dwi Putri, Dinda Pratiwi; Safi’i, Hafizh Humam
Jurnal Penginderaan Jauh Indonesia Vol 2 No 2 (2020)
Publisher : Masyarakat Ahli Penginderaan Jauh Indonesia (MAPIN) /Indonesian Society of Remote Sensing (ISRS)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Analysis of Vegetation Change Using Sentinel-2 Data in Google Earth Engine (A Case Study of Yogyakarta Special Region Province The Special Region of Yogyakarta (DIY) has a rapid rate of change in vegetation land cover in line with an increase in population that can have an impact on the environment and ecosystem. Remote sensing is a useful technology in determining land cover. The technique can monitor changes in vegetation land regularly from time to time and with various scales. This study aims to determine the changes in vegetation in the Province of DIY with the vegetation index transformation method using the NVDI (Normalized Difference Vegetation Index) algorithm. Processing using Google Earth Engine, which is a cloud-based platform that makes it easy to monitor changes in vegetation quickly and accurately from year to year. The satellite imagery used was a medium resolution satellite image sentinel-2 level 2A and level 1C, which was corrected by atmospheric using SIAC algorithm. Processing results show an average decrease in NDVI values ​​from 2017-2020, with the highest average value in 2018 was 0.73, and the lowest in 2019 was 0.59. Vegetation change was dominated by dense vegetation class, which area turned into medium vegetation class.
Variasi Emisi Gas Nitrogen Dioksida saat Pembatasan Sosial Berskala Besar di Provinsi Jawa Barat dari Pengolahan Data Sentinel-5p Anggraini, Tania Septi; Artaningh, Febzi; Sihotang, Elstri; Sakti, Anjar Dimara; Agustan, Agustan
Jurnal Penginderaan Jauh Indonesia Vol 2 No 2 (2020)
Publisher : Masyarakat Ahli Penginderaan Jauh Indonesia (MAPIN) /Indonesian Society of Remote Sensing (ISRS)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Variations of Nitrogen Dioxide Emissions during Large Scale Social Restrictions in West Java Province from Sentinel-5P Satellite Data Processing Abstract. Sentinel-5P satellite that was launched in 2017 by ESA has a mission to monitor the earth’s atmosphere. One product of Sentinel-5P mission is the distribution of troposphere column density for several gases including nitrogen dioxide (NO2). NO2 emission is related to fossil fuel combustion from human activities such as factories and vehicle emissions. In 2020, COVID-19 is spreading all over the world including Indonesia. To break the chain of its distribution, therefore, the Indonesian Government enacts large scale social restriction (PSBB) in several areas including West Java Province. Sentinel-5P data was processed and analyzed to see the variations of changes in NO2 emission in several sampled cities in West Java. It is found that the NO2 emissions have decreased during PSBB. However, before Idul Fitri event on May 18, 2020, shows that the NO2 emission at Bandung Cities, Bandung District, and Bogor District increase significantly up to six-time higher. This activity also shows that daily information from Sentinel-5P satellite can be used for monitoring gases in the atmosphere.
KLASIFIKASI TUTUPAN LAHAN DATA LANDSAT-8 OLI MENGGUNAKAN METODE RANDOM FOREST Zulfajri, Zulfajri; Danoedoro, Projo; Murti, Sigit Heru
Jurnal Penginderaan Jauh Indonesia Vol 3 No 01 (2021)
Publisher : Masyarakat Ahli Penginderaan Jauh Indonesia (MAPIN) /Indonesian Society of Remote Sensing (ISRS)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Informasi penggunaan dan tutupan lahan terbaru sangat diperlukan dalam perencanaan pembangunan wilayah dan pemantauan lingkungan. Salah satu cara untuk memperoleh informasi tersebut yaitu melalui pengolahan data citra satelit penginderaan jauh. Citra Landsat-8 OLI merupakan salah citra satelit penginderaan jauh yang mempunyai resolusi spasial multispektral 30 m dan resolusi temporal 16 hari. Penelitian ini bertujuan untuk melakukan klasifikasi tutupan lahan di sebagian wilayah Kabupaten Pidie menggunakan metode random forest berdasarkan citra Landsat-8 OLI dan menghitung nilai akurasi dari hasil klasifikasi tersebut. Ekstraksi informasi tutupan lahan dilakukan dengan menggunakan metode random forest dengan proporsi 70% untuk data training dan 30% untuk data testing. Kemudian uji akurasi dari hasil klasifikasi yang dilakukan menggunakan metode confusion matrix. Hasil pemetaan tutupan lahan di sebagian wilayah Kabupaten Pidie menunjukkan bawah kelas tutupan lahan sawah mendominasi daerah penelitian dengan luas sebesar 22.598,20 ha (29,22% dari total luas daerah penelitian). Hasil klasifikasi tutupan lahan menghasilkan nilai akurasi keseluruhan sebesar 89,53% dan nilai kappa 0,91.

Page 2 of 2 | Total Record : 15