cover
Contact Name
Ahmad Taufiq
Contact Email
jurnalteknikhidraulik@gmail.com
Phone
-
Journal Mail Official
jurnalpusair@gmail.com
Editorial Address
-
Location
Kota bandung,
Jawa barat
INDONESIA
JURNAL TEKNIK HIDRAULIK
ISSN : 20873611     EISSN : 25808087     DOI : -
Core Subject : Engineering,
The Hydraulic Engineering Journal covers a variety of scientific fields including Irrigation Engineering, Environmental quality and water management Engineering, Swamp Engineering, Beach Engineering, Water building Engineering, Harvesting Engineering, Water hydraulics and geotechnical Engineering, Hydrology and water management Engineering, Water environmental engineering, Beach Engineering, Harvesting Engineering, Sabo Engineering.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol 12, No 1 (2021): JURNAL TEKNIK HIDRAULIK" : 5 Documents clear
MITIGASI DAN PENANGGULANGAN BENCANA BANJIR DEBRIS PASCA GEMPA PALU 2018 Cosmas Bambang Sukatja; Banata W.R; Perdi Bahri
JURNAL TEKNIK HIDRAULIK Vol 12, No 1 (2021): JURNAL TEKNIK HIDRAULIK
Publisher : Pusat Litbang Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32679/jth.v12i1.648

Abstract

The 7.4 SR earthquake which occurred in The Donggala Regency, Central Sulawesi on September 28th 2018 was a shallow earthquake due to the Palukoro fault activity.  The impact of the quake’s shaking created pressure on the rock and soil masses of 77 hilly locations in the Palu, Sigi, and Donggala, causing several landslides and the increasing the potential of more. One of the slopes of at risk of  landslides which can trigger debris flow is found on the hills of Poi Village, Dolo Selatan District, Sigi Regency. The estimated volume of lose material which could fall in a landslide is 4.8 million m3. Rainfall in the area is predicted to trigger debris flow with the potential to bury settlements and block the flow of the Palu tributary located downstream. For this reason, it is necessary to conduct a study of the lose material deposits in the Poi River channel which can trigger debris flows during the rainy season. The problem-solving method in this study used is a rationalistic and descriptive qualitative approach. In predicting the distribution direction, propagation and hydrograph of the debris flow ths study applies the numerical modelling SIMLAR 2.1. This debris disaster risk management effort uses Sabo technology physically and non-physically. Keywords: earthquakes, landslides, debris flow, debris disaster management, Sabo technology physically and non-physically.
ANALISIS SEDIMENTASI LAGUNA SEGARA ANAKAN DENGAN PEMODELAN NUMERIK ANGKUTAN SEDIMEN KOHESIF Irham Adrie Hakiki; Leo Eliasta Sembiring; Cahyo Nur Rahmat Nugroho
JURNAL TEKNIK HIDRAULIK Vol 12, No 1 (2021): JURNAL TEKNIK HIDRAULIK
Publisher : Pusat Litbang Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32679/jth.v12i1.642

Abstract

Sagara Anakan Lagoon has been continuously receded caused by the high sedimentation rate. The deposited sediment volume was predicted to be around 1 million m3/year. This phenomenon, if not treated will harm the existing ecosystem and also could cause many kinds of its native biota extinct. Engineering could be applied to prevent it. However, the transport and sedimentation pattern must be known for it to be effective.  Silting in Sagara Anakan Lagoon simulated by using MIKE21 numerical model which could simulate sediment transport in 2D horizontal scheme. The deposited sediment, mainly consisted of mud, so the model must be capable for simulating cohesive sediment transport. Model is set to simulate one year of morphological event which reached with the usage of time speed up acceleration factor. Model calibrated to be able to simulate a deposition event in the order of one million m3/year. Model calibrated by tuning critical bed shear stress for deposition   and erosion  parameters as a base for sensitivity analysis. Model result shown that the sedimentation in Sagara Anakan Lagoon is caused by asymmetry of flood and ebb current. Major siltation happened around the delta with the maximum and mean observed bed change are approximately 0.6 m and 0.16 m respectively. The setup for this model could be used as a base model for planning an engineering approach for controlling sediment in Sagara Anakan Lagoon.Keywords: Numerical model, cohesive sediment, mud transport, estuary modellingKata Kunci: Model numerik, sedimen kohesif, transpor lumpur, pemodelan estuari
UJI MODEL FISIK RAYAPAN GELOMBANG PADA REVETMEN BUIS BETON Juventus Welly Radianta Ginting; Eduardo Meyrianso Simanjuntak; Ida Ayu Irawati Diah Ratna Putra
JURNAL TEKNIK HIDRAULIK Vol 12, No 1 (2021): JURNAL TEKNIK HIDRAULIK
Publisher : Pusat Litbang Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32679/jth.v12i1.643

Abstract

Buis Beton (Precast concrete pipe) revetment is a common coastal structure to protect the shoreline from erosion. However, it is common that this type of structure face high wave run up. A continuous wave run up on the slope of the structure may reduce the life service of Buis Beton revetment. The objective of this research is to create scientific based guidance to design an efficient Buis Beton revetment against wave run up. A physical modelling test is conducted to understand the relationship between wave run up and Buis Beton revetment. The test scenario is based on the slope of the structure (θ), structure height (L), buis beton diameter (φ), incoming wave height (Hi) and wave period (T). The physical modelling is conducted in 2D wave flume with laboratory scale of 1:10 with regular wave simulation. Wave run up is observed using a video camera which is later processed digitally to acquire the wave run up data. This research shows that the relative wave run up has a reciprocal functional relationship with the Iribarren Number parameter. In general, wave run up height on Buis Beton revetment is less than or equal to 2.64 the wave height, Hm0.Keywords: Revetment, buis beton, wave run-up, physical modelling
STUDI KELAYAKAN WADUK CIKAWARI 2A DAN 5A DALAM RANGKA PEMENUHAN KEBUTUHAN AIR KOTA BANDUNG Cleon Christopher; Doddi Yudianto; Albert Wicaksono
JURNAL TEKNIK HIDRAULIK Vol 12, No 1 (2021): JURNAL TEKNIK HIDRAULIK
Publisher : Pusat Litbang Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32679/jth.v12i1.654

Abstract

The water need in the Northern area of Bandung City was predicted to be 2.49 m3/s in 2040. The government responded to this issue by planning the construction of several reservoirs in the Cikapundung watershed. A previous study suggested three potential locations, i.e., Cikukang 2, Cikawari 2A, and Cikawari 5A reservoir. Since Cikawari 2A and Cikawari 5A are located on the same Cikawari river, three construction alternatives, i.e., a single reservoir of Cikawari 2A, a single reservoir of Cikawari 5A, and cascade reservoir Cikawari 2A+5A are proposed. Each alternative has its own advantages and limitations, thus evaluation of the best construction alternative needs to be carried out. The evaluation was conducted based on their reliable service in supplying water to Bandung City. This evaluation was analyzed by comparing the projected water demand following population growth and water availability derived from the rainfall-runoff model, NRECA. The analysis was conducted using two variations of dam height and reservoir capacity for each alternative. Based on the analysis results, the single reservoir of Cikawari 2A with 45 m of dam’s height was chosen as the most suitable alternative. It can supply 0.56 m3/s of water and provide water for 30.4% of the citizens in 2020, and decrease to 30.15% in 2040. However, it was also found that the reservoir could only supply 0.44 m3/s of water during the dry period. These results showed that the construction of the reservoir itself could not meet the total water demand. Therefore, another alternative is required to closing the gap in water demand.Keywords: Cikapundung watershed, water supply, Cikawari reservoir, reservoir simulation, service reliability
STUDI KARAKTERISKTIK GELOMBANG PADA FLOATING BREAKWATER TIPE TERPANCANG DAN TAMBAT Sujantoko Sujantoko; Wisnu Wardhana; Eko Budi Djatmiko; Haryo Dwito Armono; Wahyu Suryo Putro; Rizki Haryono A.
JURNAL TEKNIK HIDRAULIK Vol 12, No 1 (2021): JURNAL TEKNIK HIDRAULIK
Publisher : Pusat Litbang Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32679/jth.v12i1.650

Abstract

Floating breakwater (PGT) is designed to be applied as a wave barrier to reduce beach abrasion and wave energy so that waves coming to the beach have their energy reduced. Compared to conventional breakwater structures, PGT structures are more advantageous if the area to be protected from impact waves has a large enough depth. This structure is more flexible because the elevation follows the tides, so this structure can be used as a wharf at the same time. It is also free from the scouring and sedimentation that often occurs on the feet of conventional breakwater structures. This study aims to attenuate and reflect waves from various PGT configurations of piling and mooring types, by testing the physical model of PGT in the wave flume laboratory of the Department of Ocean Engineering ITS, at a water depth of 80 cm, a wave height of 3.5-5.5 cm, a wave period of 0.5-2 seconds, and the angle of the mooring rope (45o, 60o, 90o). PGT is arranged in a variety of longitudinal and transverse directions to the coast. Based on the experiment, it is known that the effect of configuration and width on the PGT structure on wave transmission and reflection is influenced by the mooring angle. Configuration 3 with the largest width can give the best transmission coefficient Kt = 0.797 at 45o mooring angle and reflection coefficient Kr = 0.572 at 90o mooring angle. In type 3 fixed-configuration gives the greatest value Kt = 0.431-0.623 and Kr = 0.053-0.997 compared to other configurations. Because in configurations 1 and 2 the back of the structure is not supported by piles, so a swing occurs which generates waves. While the effect of the slope of the wave, Kt will increase as the number of waves slopes decreases, conversely the value of Kt decreases with the increase in the slope of the wave.Keywords: Floating breakwater, piling, tethered,  mooring 

Page 1 of 1 | Total Record : 5