cover
Contact Name
Ahmad Taufiq
Contact Email
jurnalteknikhidraulik@gmail.com
Phone
-
Journal Mail Official
jurnalpusair@gmail.com
Editorial Address
-
Location
Kota bandung,
Jawa barat
INDONESIA
JURNAL TEKNIK HIDRAULIK
ISSN : 20873611     EISSN : 25808087     DOI : -
Core Subject : Engineering,
The Hydraulic Engineering Journal covers a variety of scientific fields including Irrigation Engineering, Environmental quality and water management Engineering, Swamp Engineering, Beach Engineering, Water building Engineering, Harvesting Engineering, Water hydraulics and geotechnical Engineering, Hydrology and water management Engineering, Water environmental engineering, Beach Engineering, Harvesting Engineering, Sabo Engineering.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol 12, No 2 (2021): JURNAL TEKNIK HIDRAULIK" : 5 Documents clear
ANALISIS PENGARUH NILAI KONDUKTIVITAS HIDRAULIK DAN DISPERSIVITAS DINAMIK TERHADAP REMEDIASI AIR TANAH MENGGUNAKAN SIMULASI NUMERIK Agus Mochamad Ramdhan; Arifin Arifin; Erik Hermawan; Lambok M. Hutasoit
JURNAL TEKNIK HIDRAULIK Vol 12, No 2 (2021): JURNAL TEKNIK HIDRAULIK
Publisher : Pusat Litbang Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32679/jth.v12i2.658

Abstract

Groundwater remediation is one of the solutions to restore the contaminated groundwater. This study was conducted to determine the effect of hydraulic conductivity and dynamic dispersivity on the groundwater remediation effectiveness. As a case study, in 2020, in an area located in Balikpapan, groundwater remediation will be carried out by injecting water containing NaOH through five wells and pumping it back through five wells to form a cycle. The method used is a numerical simulation consisting of groundwater flow simulation, mass transport, and sensitivity analysis. The results show that it takes 124 to 300 days for the injected NaOH to arrive at the pumping wells. The sensitivity analysis results show that when the hydraulic conductivity value is ten times greater, the time required is reduced to 84 to 172 days. Meanwhile, when the dynamic dispersivity is twice larger, the time required is reduced to 75 to 189 days. These results indicate that the groundwater remediation method will be effective for aquifers with high hydraulic conductivity and dynamic dispersivity values. For the study area, the groundwater remediation is suggested to be carried out by increasing the number of injection and pumping wells with a relatively close distance, i.e., around 10 meters, so that NaOH arrives at the pumping wells more quickly.Keywords: groundwater, remediation, hydraulic conductivity, dynamic dispersivity, numerical simulation
PREDIKSI DEBIT ALIRAN MASUK KE TELAGA MENJER MENGGUNAKAN PERSAMAAN NERACA AIR DAN PEMODELAN HEC-HMS Hiro Agung Pratama; Jazaul Ikhsan; Apip Apip
JURNAL TEKNIK HIDRAULIK Vol 12, No 2 (2021): JURNAL TEKNIK HIDRAULIK
Publisher : Pusat Litbang Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32679/jth.v12i2.655

Abstract

The Menjer lake is the main source for Hydroelectric Power Plant of the PLTA Garung. Information about the water balance and the potential of existing water resources in the Menjer Catchment Area (DTA) is needed to obtain an efficient operating pattern, the sustainability of the Garung hydropower plant, and good management of the Menjer Lake. The purpose of this study was to estimate the inflow of three main rivers in the Menjer catchment area using HEC-HMS hydrological and water balance approach. Simulated results of the HEC-HMS model shows that the average of total the inflows of three main rivers to the Menjer lake in 2017, 2018 and 2019 during rainy season are 0.954 m3/s, 0.944 m3/s, and 1.017 m3/s, and during dry season are 0.820 m3/s, 0.783 m3/s, and 0.80 m3/s, respectively. While the prediction results of the discharge with the equation of the water balance shows that the average of total river inflows to the Menjer lake during rainy season is 2017 is 1.628 m3/s, in 2018 it is 1.579 m3/s, and in 2019 it is 3.296 m3/s and during dry season is 1.893 m3/s in 2017, 1.176 m3/s tahun 2018, and 1.893 m3/s in 2019. These results indicate that the results of discharge modeling with HEC-HMS are smaller than those predicted by the water balance equation. The study concluded that HEC-HMS could be used to predict daily inflows. However, further calibration and validation need to be carried out by recommending installing a river flow monitoring station at each river outlet.Keywords: water balance HEC-HMS, inflow prediction
PENENTUAN POLA OPERASI PINTU PELIMPAH DALAM RANGKA PENGENDALIAN BANJIR BENDUNGAN DELINGAN, JAWA TENGAH Ariberto Jonathan; Doddi Yudianto; S Sanjaya
JURNAL TEKNIK HIDRAULIK Vol 12, No 2 (2021): JURNAL TEKNIK HIDRAULIK
Publisher : Pusat Litbang Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32679/jth.v12i2.662

Abstract

A spillway is one of many important components of a dam, which is operated to prevent the dam from overtopping. Spillway with gate structures requires to have a good operation pattern by considering a minimum critical height and outflow discharge to prevent any flooding events in the downstream part of the spillway channel. The case study in this research is the Delingan Dam which has two ogee spillways, four main sluice gates and four additional sluice gates. Located in Karanganyar District, West Java, Delingan Dam is considered as a vast infrastructure which is potentially threatening if the spillway’s operation is not optimal. This study aims to analyze the spillway gate operations’ pattern of Delingan Dam in order to control the flooding event. The methodology used in this study is flood routing by utilizing several scenarios in order to obtain the optimal simulation results. Five scenarios that were simulated on the designated flood discharge have various combinations on the number of gates and their opening, as well as the time in which the operation started. The results show that the operation only using ogee spillway still meets the criteria for minimum critical height and maximum allowable discharge for return period of 25, 50, and 100 year.As the discharge with 1000 year return period, half of PMF, and PMF,the recommended operation is, foremost, to occupy the main gate in which results in the peak outflow discharge of 23.65 m3/s, 62.4 m3/s, and 140.9 m3/s, with the minimum critical height of 1.45 m, 1.41 m, and 1.35 m, respectively. However, this operation is not adequate for the half of PMF, and the PMF discharge, since the capacity in the spillway channel is estimated about 24.7 m3/s.Keywords: spillway, flood control, spillway gate operation, the delingan dam
ANALISIS BAHAYA, LINTASAN, DAN SISTEM PROTEKSI TERHADAP POTENSI LONGSORAN TIPE JATUHAN BATU PADA LERENG BANGUNAN PELIMPAH BENDUNGAN TUGU, JAWA TIMUR Muhammad Iqbal Hamidi; Imam Achmad Sadisun
JURNAL TEKNIK HIDRAULIK Vol 12, No 2 (2021): JURNAL TEKNIK HIDRAULIK
Publisher : Pusat Litbang Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32679/jth.v12i2.663

Abstract

The construction of the Tugu Dam spillway does not escape the problem of slope instability, especially the rock fall type landslide as a result of the rock slope cutting work at STA+80. The purpose of this study was to determine the characteristics of the rock discontinuity area and the solutions needed to address the potential hazards of rock fall on the slopes of spillway structure. In this study, a semi-quantitative method conducted based on the Rockfall Hazard Rating System (RHRS) which is carried out by identifying outcrops on rock slopes. Determination of the rock fall trajectory, was conducted by statistical methods on rock mass based on changes in velocity when rocks roll, slide, and bounce. Geologically, the research area belongs to the Mandalika Formation. Based on the RHRS weighting, the total score on the STA+80 slope is 399, which means that the slope needs to be repaired or given safely with a moderate level of urgency. The rock fall trajectory modeling at the measurement location X = 121,875 has a kinetic energy of 973.14 kJ andesite and 72.59 kJ of volcanic breccia, for high results of 0.43 meters of andesite reflection and 2.04 meters of volcanic breccia, and velocity results translational velocity obtained at 33.8 m/s andesite and 8.67 m/s volcanic breccia. The potential for rock fall requires a safety system with a type of retained flexible barriers with a height of 5 meters that can be applied to the toe of the slope.Keywords: rock fall, discontinuity, trajectory, protection system, Tugu Dam
ANALISIS REMBESAN TERHADAP KEAMANAN BENDUNGAN KEDUNG OMBO DI GROBOGAN, JAWA TENGAH Rais Buldan; Suharyanto Suharyanto; Najib Najib; Kresno Wikan Sadono
JURNAL TEKNIK HIDRAULIK Vol 12, No 2 (2021): JURNAL TEKNIK HIDRAULIK
Publisher : Pusat Litbang Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32679/jth.v12i2.657

Abstract

A dam, besides having a great benefits to meet human needs, it also can be a big disaster in addition to the dam collapsing. One of the main causes of failure of an embankment dam is the occurrence of excessive seepage which triggers piping events that can disturb the stability and safety of the dam. In general, the body of the Kedung Ombo Dam is in good condition, but there are several problems, such as the drain holes that are overgrown with dense grass which indicates that seepage has occurred. Therefore, it is necessary to evaluate the seepage to determine the safety level of the Kedung Ombo Dam. This study aims to analyze the condition of pore water pressure and seepage that occurs in the body of the Kedung Ombo Dam and to determine the level of safety of the dam body. The analyze was carried out using seepage monitoring instruments installed on the dam, namely the Piezometer and V-Notch at the Kedung Ombo Dam in 2021. Based on the results of the analysis, it was found that the pore water pressure and seepage discharge that occurred in the Kedung Ombo Dam were generally still within the permissible limits. According to the analysis results of the seepage index, the highest QI value is 0.09 at the maximum flood water level of +95 m, where the safety criteria for the seepage index is QI <1. Therefore it indicates that the seepage condition index at the Kedung Ombo Dam are still in a safe condition.Keywords: pore water pressure, seepage, piezometer, V-Notch, seepage index 

Page 1 of 1 | Total Record : 5