cover
Contact Name
Muhammad Taufiq Nuruzzaman
Contact Email
m.taufiq@uin-suka.ac.id
Phone
+6287708181179
Journal Mail Official
jiska@uin-suka.ac.id
Editorial Address
Teknik Informatika, Fak. Sains dan Teknologi, UIN Sunan Kalijaga Jln. Marsda Adisucipto No 1 55281 Yogyakarta
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
JISKa (Jurnal Informatika Sunan Kalijaga)
ISSN : 25275836     EISSN : 25280074     DOI : -
JISKa (Jurnal Informatika Sunan Kalijaga) adalah jurnal yang mencoba untuk mempelajari dan mengembangkan konsep Integrasi dan Interkoneksi Agama dan Informatika yang diterbitkan oleh Departemen Teknik Informasi UIN Sunan Kalijaga Yogyakarta. JISKa menyediakan forum bagi para dosen, peneliti, mahasiswa dan praktisi untuk menerbitkan artikel penelitiannya, mengkaji artikel dari para kontributor, dan teknologi baru yang berkaitan dengan informatika dari berbagai disiplin ilmu
Arjuna Subject : -
Articles 231 Documents
Comparative Analysis of Hybrid CNN-ViT and CNN for Brain Tumor Classification Fauzi, Ahmad; Fuadi, Achmad Lutfi; Yunial, Agus Heri
JISKA (Jurnal Informatika Sunan Kalijaga) Vol. 11 No. 1 (2026): January 2026
Publisher : UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14421/jiska.5860

Abstract

The automated categorization of brain cancers from MRI is essential for improving diagnostic precision. Traditional Convolutional Neural Networks (CNNs) are proficient in local feature extraction but are constrained in their ability to capture long-range spatial relationships, hence impairing performance on intricate malignancies. We propose a hybrid parallel architecture that merges a CNN with a Vision Transformer (ViT) to combine local and global feature modeling. We assessed our dual-branch model in comparison to a conventional CNN baseline using a curated dataset of 15,000 MRI images categorized into three classes: glioma, meningioma, and pituitary. The hybrid model exhibited enhanced performance, attaining 98.40% accuracy and 0.0783 loss, in contrast to the baseline's 97.40% accuracy and 0.1187 loss. The substantial decrease in misclassifications was validated by additional metrics, such as enhanced recall for the meningioma category. The integration of local and global variables produces a more precise, stable, and generalizable classification framework, demonstrating significant potential as a basis for dependable AI-driven Clinical Decision Support Systems (CDSS) in neuroradiology.