cover
Contact Name
Ahmad Azhari
Contact Email
ahmad.azhari@tif.uad.ac.id
Phone
+6281294055949
Journal Mail Official
mf.mti@uad.ac.id
Editorial Address
Magister Teknik Informatika Jl. Prof. Dr. Soepomo SH, Janturan, Warungboto, Yogyakarta 55164
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Mobile and Forensics
ISSN : 26566257     EISSN : 27146685     DOI : https://doi.org/10.12928/mf
Mobile and Forensics (MF) adalah Jurnal Nasional berbasis online dan open access untuk penelitian terapan pada bidang Mobile Technology dan Digital Forensics. Jurnal ini mengundang seluruh ilmuan dan peneliti dari seluruh dunia untuk bertukar dan menyebarluaskan topik-topik teoritis dan praktik yang berorientasi pada kemajuan teknologi mobile dan digital forensics.
Articles 1 Documents
Search results for , issue "Vol. 8 No. 1 (2026)" : 1 Documents clear
Performance Analysis of Random Forest Algorithm with Smote for Multi-Class Attack Detection Komalasari, Ratna; Aji, Mukhlis Prasetyo; Wicaksono, Agung Purwo; Fitriani, Maulida Ayu
Mobile and Forensics Vol. 8 No. 1 (2026)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/mf.v8i1.14584

Abstract

The increasing sophistication of cyberattacks necessitates the development of detection systems capable of accurately identifying various threat types. Data imbalance within attack logs presents a substantial challenge that can undermine the effectiveness of detection models. This study introduces a multi-class cyberattack detection model employing the Random Forest algorithm, optimized through the Synthetic Minority Over-sampling Technique (SMOTE) to address data imbalance. The innovative aspect of this research lies in integrating Random Forests and SMOTE to improve multi-class classification accuracy on local attack log datasets. This approach remains sparsely explored in academic research. The dataset consists of 3000 cyberattack logs from the Information Systems Bureau of Muhammadiyah University Purwokerto, spanning 10 cyberattack categories. The research process involved data collection, pre- processing, division, model training, and evaluation. Results indicate that the model achieved an average F1-macro score of 76% and a weighted average of 93%, with the " Threat Level Medium " feature identified as the most influential predictor. These findings suggest that the combination of Random Forest and SMOTE effectively enhances multi-class detection performance and presents promising prospects for log-based cybersecurity systems in educational and industrial environments.

Page 1 of 1 | Total Record : 1