cover
Contact Name
Triwiyanto
Contact Email
triwiyanto123@gmail.com
Phone
+628155126883
Journal Mail Official
editorial.ijeeemi@gmail.com
Editorial Address
Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya Jl. Pucang Jajar Timur No. 10, Surabaya
Location
Kota surabaya,
Jawa timur
INDONESIA
Indonesian Journal of electronics, electromedical engineering, and medical informatics
ISSN : -     EISSN : 26568624     DOI : https://doi.org/10.35882/ijeeemi
The Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics (IJEEEMI) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics which covers three (3) majors areas of research that includes 1) Electronics, 2) Biomedical Engineering, and 3) Medical Informatics (emphasize on intelegent system design). Submitted papers must be written in English for an initial review stage by editors and further review process by a minimum of two reviewers.
Articles 113 Documents
Automatic Dehydration Level Detection Devices Diana Dwi Damayanti; Her Gumiwang Ariswati; I Dewa Gede Wisana; Hendra Winarno
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 2 No 2 (2020): August
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v2i2.5

Abstract

Dehydration is a condition that occurs when the loss of body fluids exceeds the amount entered in the body so that it can disrupt the balance of minerals in body fluids. Most people do not feel thirsty until finally, they experience a period of severe dehydration, which can cause physical, cognitive, fatigue; if not corrected immediately can cause death. The purpose of this study is to design a dehydration and urine pH detection devices automatically. The contribution of this study is that this device is equipped with urine pH measurement and automatic body fluid calculation. This device is able to detect urine color levels, read urine pH values ​​, and provide information on body fluids needed to treat the patient's condition when detected. The sensors used in this device are color sensor TCS34725, pH meter sensor module SKU-016 and DS18B20 temperature sensor, the calculation of the amount of fluid that must be entered automatically from the patient's body weight input. The programming uses Arduino Nano as the main controller with a 128x64 graphic LCD. From the testing that has been done, it is known that the percentage error in the module is 3.5%, which means that it is still in the tolerance value because the tolerance limit is 5%, for the sensitivity test results get a value of 60% and specificity of 70%. Thus, it shows that the device is feasible and can be implemented as a dehydration detection device that is carried out independently at home.
Design an Occlusion Calibrator using XGZP6887 and Servo Motor MG966R as a Simulator Rizki Auliya; Syaifudin Syaifudin; Liliek Soetjiatie
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 1 (2021): February
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v3i1.5

Abstract

A foreign fluid that enters the patient can cause some bodily reactions including infection, air embolism and blood clot. Side effects given will be fatal to the body, one of which occurs the blockage of the capillary vessels in the heart that can cause heart attack to stroke. The purpose of this research is to design a tool that can be used to measure maximum pressure as a form of the calibration of the syringe pump and infusion pump. The contribution of this research is that the system can simulate the presence of blockages in fluid flow and detect large pressure values detected by the Under Test Unit (UUT) with a motor peerround system that opens/closes fluid flow. Servo Motor MG966R simulate the presence of blockage with constant motor degree until the alarm UUT reads, then Sensor XGZP6887 detects the pressure generated by the blockage and processed by the microcontroller and displayed on the LCD display of the character. This study resulted in a maximum pressure average value of 7.12 Psi. The results showed that data retrieval had an error value of -0.12. This research can be implemented to perform pressure measurements on the syringe pump or infusion pump.
Development of Measuring Device for Non-Invasive Blood Sugar Levels Using Photodiode Sensor Frendi Agung Dwi Saputra; Bedjo Utomo; Sumber Sumber
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 2 No 2 (2020): August
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v2i2.3

Abstract

Diabetes mellitus is one of the deadliest diseases faced by Indonesian people. The number of sufferers of this disease in Indonesia is 10 million according to the International Diabetes Federation (IDF). Indonesia is included in five countries with the number of people with diabetes mellitus. This disease is caused by high levels of glucose in the blood. Patients are usually not controlled for sugar consumption in everyday life. For measuring blood sugar levels so far, the most widely used device is invasive, namely by injuring the patient's body. Techniques like this make people reluctant to take measurements of glucose levels in their blood routinely. Though it is recommended to take measurements regularly to be able to control the intake of nutrients in the body. The method used in this experiment is to design and build a blood sugar measuring device using a photodiode sensor. As well as collecting data on several patients related to blood to obtain patient data. Based on the results of the identification of the problems mentioned above, the authors make a non-invasive measuring tool entitled "Design of a Non-invasive Blood Sugar Measuring Instrument (TFT Display)". Results that have been obtained from this study are there are error values in the voltage measurement circuit voltage distribution with the calculation of the resistance value to get the voltage value. The error value obtained is 5%. The results of the linear regression value of 0.996.
A Low Cost Negative Pressure Wound Therapy Based on Arduino Fikri Fahriansyah Pramono; Sari Luthfiyah; Triana Rahmawati; Nur Hasanah Ahniar
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 2 No 2 (2020): August
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v2i2.2

Abstract

Instant life patterns and eating patterns and inappropriate exercise schedules are thought to be one of the causes of the increasing number of diabetes mellitus. Complications that can be caused by this disease are in the form of excessive susceptibility to infection, so that it develops into diabetic ulcers and can lead to amputations in these parts of the body. The purpose of this study is to design a tool used to treat diabetic ulcers. The contribution of this study is that the system can help remove fluid from the wound with controlled suction pressure so that it can facilitate the healing process faster. This Negative Pressure Wound Therapy (NPWT) tool works based on negative pressure from the vacuum motor by utilizing MPXV4115VC6U and MPXV5050VC6T1 pressure sensors at a pressure limit of 0 to -350 mmHg. Using an Arduino microcontroller for data processing, it will then be displayed on the 2x16 LCD. The MPX4115VC6U sensor produces a pressure of -55.97 mmHg when setting -50 mmHg and the resulting output is 3.32 volts, while the MPXV5050VC6T1 sensor produces a pressure of 51.18 mmHg at a setting of 50 mmHg and the resulting output is 3.18 volts, from the above data it can be seen if the MPX5050VC6TI sensor has a smaller error given
Automatic Blood Collection and Mixer in a Blood Transfusion System Equipped with Barrier Indicators Chandra Bimantara Putra; Her Gumiwang Ariswati; Sumber Sumber; Muzni Zahar
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 2 No 2 (2020): August
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v2i2.1

Abstract

A blood collection monitor is a device used to measure and shake the blood bag during a blood transfusion so that the blood in the bag does not clot and is mixed with anticoagulant fluid in the bag properly. This study aims to design an automatic blood collection and mixer for the transfusion blood system. The advantage of the proposed design is accompanied by a safety system in the form of a barrier indicator that is connected to an alarm. The alarm served to give a warning to blood donors if there is an obstacle or there is no increase in volume as much as 20ml for 1 minute as recommended by the world blood bank association. This device can work with three different sizes of blood bags. In this study, a loadcell sensor is used to detect the amount of blood fluid that enters the bag. Furthermore, then it is converted into milliliter volume. In order to collect the blood, a shaker is drove using a motor controlled by Arduino microcontroller. From the measurement, for the entire size of the blood bag, we found that the deviation is 0, UA is 0, and the average error is 0. Thus, it can be concluded that this device can be used properly. In the future, it can be developed a blood infusion with the flowrate measurement to determine the speed of blood during donation
An Improved Measurement Accuracy of Fetal Heart Rate using Digital Filter Riska Setyawati; Priyambada Cahya Nugraha; Her Gumiwang Ariswati; Nur Hasanah Ahniar
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 2 No 3 (2020): November
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v2i3.5

Abstract

Non stress test, there are several parameters including the fetal Doppler. fetal doppler is used to detect the fetal heart in the womb. It can be seen that the fetal heart rate in the womb under normal circumstances is in the range of 120-140 beats per minute. Noise on doppler fetal output can affect fetal heart rate readings. the purpose of this research is to design a non stress test device that is displayed on nextion. The contribution of this research is the creation of a portable device with nextion display and using analog and digital filters that can be used as noise removal. the method used to eliminate noise by using a bandpass type filter design frequency 20-40 Hz by designing a large frequency suppression outside the cutoff so that noise is not counted as a fetal heart rate. to detect the fetal heart rate in the mother's womb using a piezoelectric sensor. then the fetal heart rate obtained is filtered and the data is processed using Arduino after the results of processing the filter between analog bandpass and digital bandpass type Chebyshev method I then the results of the tool will be displayed on nextion. The results showed that measurements on analog filter modules that have been made produce an error value of 8.62% and digital filters that have been made produce an error value of 12.97%. The results of this study can be applied to fetal heart rate gauges portable at a health clinic.
Development of a Low-Cost and Effisient ECG devices with IIR Digital Filter Design I Dewa Gede Hari Wisana; Priyambada Cahya Nugraha; Rizki Aulia Rachman
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 1 (2021): February
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v3i1.4

Abstract

Measurement of biosignals such as electrocardiograph has the interpretation of noise from other signals. The noise can interfere with the measurement of the heart signal and make the measurement inaccurate, so the purpose of this study is to make a 6-Lead Electrocardiogram module with an Arduino-Based Digital Filter. By using a digital filter. The contribution of this research is the use of digital filters to eliminate noise in electrocardiograph signals. This research uses Infinite Impulse Filter digital filters such as Butterworth, Chebyshev I, Chebyshev II, and Elliptic in order 2, 4, 6, 8, and 10. The study was conducted by providing input from the Function Generator on Arduino which has been applied digital filters with Frequency with 0.5Hz – 100Hz cut-off. The instrument is compared with a factory electrocardiograph. Filter measurements using 460 input data. Butterworth filter with the greatest emphasis on order 8 frequency 0.5Hz produces an emphasis of -5.74298158 dB and a frequency of 100Hz produces an emphasis of -5.93529424 dB. The Chebyshev I filter has the greatest emphasis on order 6 frequency 0.5Hz producing an emphasis of -3.27104076 dB and on order 8 frequency 100Hz producing an emphasis of -5.08730424 dB. Chebyshev II filter the biggest emphasis on the order of frequency 0.5Hz produces a suppression of -44,66011104 dB and 80Hz frequency produces a suppression of -37,3653957 dB. Elliptic filters the greatest emphasis on order 6 frequency 0.5Hz produces an emphasis on -1.55429354 dB and 100Hz frequency on order 8 produces an emphasis on -2.2849115 dB. The results showed that what was appropriate with the cut-off frequency was the Butterworth order 8 filter which was suitable for the application of the Electrocardiograph signal filter because it had bandwidth that suppressed the signal outside the cut-off frequency. The results of this study can be implemented on a 6-Lead ECG module to eliminate noise or interference when tapping ECG signals.
Communication Coroutines For Parallel Program Using DW26010 Many Core Processor Ajit Singh
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 1 (2021): February
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v3i1.3

Abstract

Communication between parallel programs is an indispensable part of parallel computing. SW26010 is a heterogeneous many-core processor used to build the Sunway Taihu Light supercomputer, which is well suited for parallel computing. There is the designing and implementing a coroutine scheduling system on the SW26010 processor to improve its concurrency, it is very important and necessary to achieve communication between coroutines for the coroutine scheduling system in advance. Therefore, this paper proposes a communication system for data and information exchange between coroutines on SW26010 processor, which contains the following parts. The designing and implementation a producer-consumer mode channel communication based on ring buffer, and it designs synchronization mechanism for condition of multi-producer and multi-consumer based on the different atomic operation on MPE (management processing element) and CPE (computing processing element) of SW26010. There is also the designing of a wake-up mechanism between the producer and the consumer, which reduces the waiting of the program for communication. The testing and analysis of the performance of channel in different numbers of producers and consumers, draw the conclusion that when the number of producers and consumers increases, the channel performance will decrease.
Support Vector Machine And K-Nearest Neighbor Based Liver Disease Classification Model Tsehay Admassu Assegie
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 1 (2021): February
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v3i1.2

Abstract

Machine-learning approaches have become greatly applicable in disease diagnosis and prediction process. This is because of the accuracy and better precision of the machine learning models in disease prediction. However, different machine learning models have different accuracy and precision on disease prediction. Selecting the better model that would result in better disease prediction accuracy and precision is an open research problem. In this study, we have proposed machine learning model for liver disease prediction using Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) learning algorithms and we have evaluated the accuracy and precision of the models on liver disease prediction using the Indian liver disease data repository. The analysis of result showed 82.90% accuracy for SVM and 72.64% accuracy for the KNN algorithm. Based on the accuracy score of SVM and KNN on experimental test results, the SVM is better in performance on the liver disease prediction than the KNN algorithm.
Design of Vital Sign Monitor with ECG, BPM, and Respiration Rate Parameters Gede Aditya Mahendra Oka; Andjar Pudji
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 1 (2021): February
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v3i1.6

Abstract

Vital sign monitor is a device used to monitor a patient's vital sign, in the form of a heartbeat, pulse, blood pressure, temperature of the heart's pulse form continuously. Condition monitoring in patients is needed so that paramedics know the development of the condition of inpatients who are experiencing a critical period. Electrocardiogram (ECG) is a physiological signal produced by the electrical activity of the heart. Recording heart activity can be used to analyze how the characteristics of the heart. By obtaining respiration from outpatient electrocardiography, which is increasingly being used clinically to practice to detect and characterize the abnormal occurrence of heart electrical behavior during normal daily activities. The purpose of this study is to determine that the value of the Repiration Rate is taken from ECG signals because of its solidity. At the peak of the R ECG it has several respiratory signals such as signals in fluctuations. An ECG can be used to determine breathing numbers. This module utilizes leads ECG signals to 1 lead, namely lead 2, respiration rate taken from the ECG, BPM in humans displayed on a TFT LCD. This research module utilizes the use of filters to obtain ECG signals, and respiration rates to display the results on a TFT LCD. This module has the highest error value of 0.01% compared to the Phantom EKG tool. So this module can be used for the diagnosis process.ECG, Respiration Rate, Filter

Page 4 of 12 | Total Record : 113