cover
Contact Name
Ari Pramudyantoro
Contact Email
ajche.ft@ugm.ac.id
Phone
+62274555320
Journal Mail Official
ajche.ft@ugm.ac.id
Editorial Address
Jln. Grafika No. 2 Kampus UGM Yogyakarta Indonesia 55281
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
ASEAN Journal of Chemical Engineering
ISSN : 26555409     EISSN : 26555409     DOI : https://doi.org/10.22146/ajche.52004
The ASEAN Journal of Chemical Engineering publishes papers on Chemical Engineering, specifically but not limited to the areas of thermodynamics, reaction kinetics, transport phenomena, process control, environment, energy, biotechnology, corrosion, separation science, powder technology, materials science, and chemical engineering education
Articles 5 Documents
Search results for , issue "Vol 10, No 1 (2010)" : 5 Documents clear
γ-Alumina Doped Alginate Gel for Cell Immobilization in Fermentation Processes Jirawan Mongkolkajit; Jiranan Pullsirisombat; Seeroong Prichanont; Veerapat Tantayakom; Phatthanon Prasitchoke; Muenduen Phisalaphong
ASEAN Journal of Chemical Engineering Vol 10, No 1 (2010)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (208.613 KB) | DOI: 10.22146/ajche.50089

Abstract

γ-Alumina (γ-Al2O3) doped alginate gel (AEC) was developed as a cell carrier in fermentation processes of Saccharomyces cerevisiae M.30 for ethanol production and Clostridium butyricum DSM 5431 for 1,3-propanediol production. In a single batch system of ethanol fermentation, the final ethanol concentration of suspended cell (SC), immobilized cell on γ-Al2O3 (AC) and AEC cultures were 82.4, 77.1 and 74.6 g/l, respectively. In 4-cycle repeated batch fermentation, the AEC culture demonstrated a good potential of reusability. Its ethanol production and conversion yield of the 1st, 2nd and 3rd repeated batch were comparable to those of the SC and AC cultures with the immobilization yield of 86%. AEC was also found to be effective for the cell immobilization of C. butyricum with the immobilization yield of 83%. However, the strong inhibition effect of cell-γ-Al2O3 immobilization towards 1,3-propanediol production was observed. Moreover, 1, 3-propanediol fermentation stability in the SC, AC and AEC systems tended to be lowered during the repeated batch fermentation. Interfering of positive charge of γ-Al2O3 on the cell membrane was thought to be the cause of the inactivity of C. butyricum DSM 5431 in 1,3-propanediol production.
The Effect of Coal Fly Ash Crystallinity toward Methyl Violet Adsorption Capacity Widi Astuti; I Made Bendiyasa; Endang Tri Wahyuni; Agus Prasetya
ASEAN Journal of Chemical Engineering Vol 10, No 1 (2010)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (422.902 KB) | DOI: 10.22146/ajche.50090

Abstract

Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of some oxides having high crystallinity, like quartz and mullite. In this study, the effect of CFA crystallinity toward methyl violet (MV) adsorption capacity was investigated. To decrease crystallinity of CFA, the solution of sodium hydroxide (NaOH) of 1-7 M was used to treat CFA at various temperatures and reflux time. Then, to evaluate the effect of NaOH-treated CFA with respect to adsorption capacity, the original and NaOH-treated CFA were tested its MV adsorption capacity in batch experiments. Original or NaOH-treated CFA was contacted with 50 mL of MV solution at temperature of 26oC. The effects of contact time, pH of solution, adsorbent dose and initial concentration of dye on the adsorption of MV were investigated. The results show that CFA treated with low NaOH concentration (1-3 M), temperature of 60oC and 2 hours reflux time, the crystallinity of quartz and mullite decreases, but its capacity on MV adsorption increases from 34% to 97%. At higher NaOH concentration (>3M), in the range of studied reflux temperature and time, it is found that decreasing quartz and mullite crytallinity are followed by a hydroxysodalite formation which causes the decreasing of MV adsorption from 97% to 83%. The highest adsorption capacity of NaOH-treated CFA was found 1.24 x 10-5 mol g-1. Adsorption kinetics of MV onto NaOH-treated CFA could be approximated with a pseudo second order kinetic model with the rate constant was 3.2 x 103 g mol-1 min-1.
NOx Enriched Flue Gas Fixation for Biomass Production of Chlorella Vulgaris Buitenzorg Dianursanti Dianursanti; Mohammad Nasikin; Anondho Wijanarko
ASEAN Journal of Chemical Engineering Vol 10, No 1 (2010)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (253.188 KB) | DOI: 10.22146/ajche.50091

Abstract

Cultivation of Chlorella vulgaris Buitenzorg in a pilot scale of bubble column photo bioreactor using simulated NOx enriched flue gas concluded that presence of N2O as simulated NOx pollution (0.02%) in blowing bubbled air and CO2 is not so significant, compare to control experiment that was designed by absence of N2O (around 20% decreased). Meanwhile, presence of N2O tends a less significantly decreasing of μ - specific growth rate and qCO2 – specific CO2 transferred rate. It is around 30% decreased in both of μ and qCO2. Then, cultivation by presence of NOx in blowing simulated flue gas could drastically decreased intracellular carotene and lipid content and become increase to level near to both of pigment and lipid content in control experiment. Furthermore, cultivation by presence of NOx in blowing simulated flue gas also could drastically exchange intracellular fatty acid content and it become dominated by 16:0 species. Finally, refreshing cellular growth product with re-cultivation by blowing fresh air, could be restored the fatty acid content nearly to beginning microbial fatty acid content. It was happened cause of converting hexadecanoate species to octadecanoate species and it was shown that oleate (18:1) was dominating species.
Effect of Fiber Loading on the Mechanical Strength of NFR Hybrid Composites Terence Tumolva; Masatoshi Kubouchi; Saiko Aoki; Tetsuya Sakai
ASEAN Journal of Chemical Engineering Vol 10, No 1 (2010)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (759.298 KB) | DOI: 10.22146/ajche.50092

Abstract

Ortho-type UP resin is reinforced with long abaca and short bagasse fibers to produce a novel type of natural fiber-reinforced (NFR) hybrid composite material that is environment-friendly, has a long service life, possesses the properties of both long and short FRP’s, and has also acquired the advantages of utilizing two different types of natural fiber reinforcements. The abaca and bagasse fibers are treated in 5wt% NaOH(aq) solution at 80°C for 9 hours and pressed into continuous, unidirectional fiber sheets and random fiber mats, respectively. The fibers are then incorporated into the resin matrix by hand lay-up method, producing FRP laminates with the same uniform thickness but subjected to varying fiber loading conditions: (1) the stacking of long fiber sheets are done in cross-ply and parallel orientation; (2) the abaca and bagasse fibers are stacked in different alternating sequence patterns, and (3) the fibers are added into the ortho-UP matrix at increasing fiber fraction. The alkali-treated FRP laminates show an increase in fiber-matrix interfacial adhesion as compared to the untreated FRP’s, based on the overall improvement in the composite mechanical strength, as well as from the lesser visible fiber pull-out observed from SEM images on their fracture surfaces. Also, as expected, the tensile and flexural strengths of the abaca/bagasse hybrid FRP measures intermediate to those of abaca and bagasse FRP’s. The strength has also improved with increasing fiber content, although this increase has also caused an increased occurrence of void spaces that may consequently become detrimental to the NFR composite’s performance.
Modeling and Simulation of a Separate Line Calciner Fueled with a Mixture of Coal and Rice Husk Sunu Herwi Pranolo; Yazid Bindar; Dwiwahju Sasongko; Herri Susanto
ASEAN Journal of Chemical Engineering Vol 10, No 1 (2010)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (281.714 KB) | DOI: 10.22146/ajche.50093

Abstract

A model has been made to predict performance of a calciner in a cement plant for the use of rice husk as partial substitution of coal. The calciner was assumed as a plug flow reactor with no-mass and heat transfer limitations. The model was composed of three equations of calcination, coal and rice husk combustions with kinetic parameters obtained from literature. Two of 20 sets of operation data were used as base-lines for simulations, namely: Case-A from operation at a capacity of 532 ton h-1 of kiln feed (KF) with coal as a fuel; and Case-B at 530 ton h-1 with 20% rice husk in a mixed fuel. Two simulations were executed at constant total fuel mass flow-rate (21.94 ton h-1 of Case-A and 27.39 ton h-1 of Case-B) and at constant total energy supplied (0.946 and 1.188 GJ ton-1 KF for Case-A and Case-B respectively). Our simulation showed that a target CaCO3 conversion could be obtained using mixed fuel with maintaining constant total energy supplied instead of constant total fuel mass flow-rate. In Case-A as base-line, the use of mixed fuel with 20% rice husk with maintaining constant supplied energy would give a coal saving of 11.8%. This operation however would require an increase in specific fuel consumption from 0.0412 to 0.0455 ton ton-1 of KF. In Case-B as base-line, the CaCO3 conversion of 95% could be obtained with a mixed fuel with rice husk mass fraction up to 40%.

Page 1 of 1 | Total Record : 5