cover
Contact Name
Ari Pramudyantoro
Contact Email
ajche.ft@ugm.ac.id
Phone
+62274555320
Journal Mail Official
ajche.ft@ugm.ac.id
Editorial Address
Jln. Grafika No. 2 Kampus UGM Yogyakarta Indonesia 55281
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
ASEAN Journal of Chemical Engineering
ISSN : 26555409     EISSN : 26555409     DOI : https://doi.org/10.22146/ajche.52004
The ASEAN Journal of Chemical Engineering publishes papers on Chemical Engineering, specifically but not limited to the areas of thermodynamics, reaction kinetics, transport phenomena, process control, environment, energy, biotechnology, corrosion, separation science, powder technology, materials science, and chemical engineering education
Articles 6 Documents
Search results for , issue "Vol 14, No 1 (2014)" : 6 Documents clear
The Optimization of Ozonolysis Reaction For Synthesis of Biopolyol From Used Palm Cooking Oil Edy Purwanto; Lieke Riadi; Nathania Tamara I.; Mellisha Ika K.
ASEAN Journal of Chemical Engineering Vol 14, No 1 (2014)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1424.632 KB) | DOI: 10.22146/ajche.49711

Abstract

Biopolyol is a raw material for synthesis of polyurethanes which is used as thermoset and thermoplastic materials, adhesives, rigid or non-rigid foams and also for coating. The utilization of waste edible oil as feedstock for synthesis of biopolyol has attracted some researchers. However, there is little attention focused on the application of ozone technology for synthesis of biopolyol from used cooking oil through ozonolysis reaction. Response surface methodology was performed to determine the optimal operating condition in the synthesis of biopolyol using ozone and sorbitol as a hydroxyl group source. The influence of input variables such as temperature, reaction time, molar ratio of oil to sorbitol and ozone concentration on hydroxyl value quantified was studied. The optimal condition was determined by high amount of hydroxyl value resulted from response surface method which used the experimental data. The ozonolysis reaction was conducted in a batch reactor equipped with agitator, tube sparger, thermocouple, reflux condenser and potassium iodide trap. Central composite design with four independent variables and one response variable was performed to determine the influence of independent variables on output variable of hydroxyl value of biopolyol. The hydroxyl value of polyol is a quadratic function of molar ratio of oil to methanol and a linear function of reaction temperature. The optimal operating condition was achieved at a temperature of 25℃, a reaction time of 5 hours, molar ratio of used cooking oil to sorbitol is 1:7 and ozone concentration about 4.8%.Keywords: Ozonolysis; Biopolyol; Hydroxyl value; Used cooking oil; Palm oil
The Effect of Slightly Upward and Downward Inclined Pipes on the Stability of Gas-Oil Two-Phase Flow Peyman Sabzi; Saheb Noroozi
ASEAN Journal of Chemical Engineering Vol 14, No 1 (2014)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1315.776 KB) | DOI: 10.22146/ajche.49712

Abstract

Pipeline inclination has an important effect on the stability of two-phase flow and flow assurance in the pipeline. This inclination may be intentional; it may be inevitable in pipeline installation; or it may be due to an error in pipeline installation. In this situation, even the slight inclination of the pipe plays an important role in the growth or elimination of the instability of the two-phase flow. In this study using a code designed for the analysis of pipelines’ two-phase flow, the stability of the two-phase flow for Kerosene oil flow along with methane gas has been compared in downward inclined pipes, upward inclined pipes, and horizontal pipes. Using the mentioned computer code, it has been proved that the pipe’s upward inclination results in the increase of two-phase flow instability, while the pipe’s downward inclination is helpful in two-phase flow stability. In order to model two-phase flow in the pipe, two-fluid model has been used. This model considers each phase separately and the equations of mass conservation and momentum are written for each phase. The momentum exchange between the two phases and between each phase and the pipe wall has been considered. Conservation equations have been solved using SIMPLE algorithm in a numerical form with finite volume method.Keywords: Pipes, Two-Phase Flow, Inclined Stability, Two-Fluid Model
Dynamic Simulation of Adiabatic Catalytic Fixed-Bed Tubular Reactors: A Simple Approximate Modeling Approach Wiwut Tanthapanichakoon; Shinichi Koda; Burin Khemthong
ASEAN Journal of Chemical Engineering Vol 14, No 1 (2014)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1261.697 KB) | DOI: 10.22146/ajche.49713

Abstract

Fixed-bed tubular reactors are used widely in chemical process industries, for example, selective hydrogenation of acetylene to ethylene in a naphtha cracking plant. A dynamic model is required when the effect of large fluctuations with time in influent stream (temperature, pressure, flow rate, and/or composition) on the reactor performance is to be investigated or automatically controlled. To predict approximate dynamic behavior of adiabatic selective acetylene hydrogenation reactors, we proposed a simple 1-dimensional model based on residence time distribution (RTD) effect to represent the cases of plug flow without/with axial dispersion. By modeling the nonideal flow regimes as a number of CSTRs (completely stirred tank reactors) in series to give not only equivalent RTD effect but also theoretically the same dynamic behavior in the case of isothermal first-order reactions, the obtained simple dynamic model consists of a set of nonlinear ODEs (ordinary differential equations), which can simultaneously be integrated using Excel VBA (Visual BASIC Applications) and 4th-order Runge-Kutta algorithm. The effects of reactor inlet temperature, axial dispersion, and flow rate deviation on the dynamic behavior of the system were investigated. In addition, comparison of the simulated effects of flow rate deviation was made between two industrial-size reactors.Keywords: Dynamic simulation, 1-D model, Adiabatic reactor, Acetylene hydrogenation, Fixed-bed reactor, Axial dispersion effect
Effect of Experimental Factors in the Growth of Carbon Nanotubes from CO2 by MPECVD Process Fritzie Hannah Baldovino; Joseph L. Auresenia
ASEAN Journal of Chemical Engineering Vol 14, No 1 (2014)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (695.24 KB) | DOI: 10.22146/ajche.49714

Abstract

The effects of experimental factors such as type of catalyst (nickel and cobalt) and substrate (iron and silicon wafer) in the growth of carbon nanotubes (CNT) from CO2 by microwave plasma-enhanced chemical vapor deposition (MPECVD) was systematically studied. Catalyst size and CNT grown were examined using scanning electron microscope (SEM). Furthermore, gas chromatography (GC) was used to analyze the effluent gas. Moreover, suitable type of catalyst and substrate were determined in terms on the amount of CNT grown, purity, and carbon conversion.Keywords : carbon nanotubes, chemical vapor deposition, nanotechnology
Thermodynamic Modelling of Gas Hydrate Formation in the Presence of Inhibitors and the Consideration of their Effect Peyman Sabzi; Saheb Noroozi
ASEAN Journal of Chemical Engineering Vol 14, No 1 (2014)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1089.626 KB) | DOI: 10.22146/ajche.49715

Abstract

Gas hydrates formation is considered as one the greatest obstacles in gas transportation systems. Problems related to gas hydrate formation is more severe when dealing with transportation at low temperatures of deep water. In order to avoid formation of Gas hydrates, different inhibitors are used. Methanol is one of the most common and economically efficient inhibitor. Adding methanol to the flow lines, changes the thermodynamic equilibrium situation of the system. In order to predict these changes in thermodynamic behavior of the system, a series of modelings are performed using Matlab software in this paper. The main approach in this modeling is on the basis of Van der Waals and Plateau's thermodynamic approach. The obtained results of a system containing water, Methane and Methanol showed that hydrate formation pressure increases due to the increase of inhibitor amount in constant temperature and this increase is more in higher temperatures. Furthermore, these results were in harmony with the available empirical data.Keywords: Gas hydrates, thermodynamic inhibitor, modelling, pipeline blockage
Experimental Study on Hydrocracking Process of Asbuton Hydrocarbon Based on the Aromatic, and Waxy Residue Based on Paraffinic, by using Pt/Pd and γ-Alumina Catalyst in a Fixed Bed Reactor Bardi Murachman; Deendarlianto Deendarlianto; Nissaraly H.F.; Wakhid Hasyim
ASEAN Journal of Chemical Engineering Vol 14, No 1 (2014)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (984.497 KB) | DOI: 10.22146/ajche.49716

Abstract

The studies on the hydrocracking process to obtain the fuel by cracking of the carbon chain from the hydrocarbon compound both in the form of gas and liquid fuels have been carried-out massively by researchers over three decade. In the present experimental study, heavy hydrocarbon represented by asphaltic base materials (named as Extracted Asbuton) and paraffinic (waxy residue from Cepu oil refinery) were used as the object of the study; by observing the differences of the reaction mechanisms and the results that can be obtained. Here the operational conditions such as pressure, temperature, and time as well as the kinds of catalyst were considered as the main parameters. The experiments were carried-out under the similar operating condition such as temperature around 350 – 500oC, pressure around 5 up to 15 atmospheres, and evaporation time was (1 – 3) hours. As a result, it was obtained (a) the higher the temperature, pressure, and heating time, the higher hydrocracking conversion both of hydrocarbons, (b) reaction mechanism of hydrocracking by using asphalt extract as the material follows the Model 3 of the present work, in which asphalt vapor was trapped in catalyst surface, meanwhile the waxy residue followed the Model 1, (c) under the same condition, the conversion of asphalt extract was smaller than waxy residue, and (d) the conversion of asphalt extract using Pt/Pd catalyst was higher than γ-Alumina catalyst.Keywords : Asbuton, Waxy Residue, Hydrocracking, Reaction Mechanisms.

Page 1 of 1 | Total Record : 6