cover
Contact Name
Ari Pramudyantoro
Contact Email
ajche.ft@ugm.ac.id
Phone
+62274555320
Journal Mail Official
ajche.ft@ugm.ac.id
Editorial Address
Jln. Grafika No. 2 Kampus UGM Yogyakarta Indonesia 55281
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
ASEAN Journal of Chemical Engineering
ISSN : 26555409     EISSN : 26555409     DOI : https://doi.org/10.22146/ajche.52004
The ASEAN Journal of Chemical Engineering publishes papers on Chemical Engineering, specifically but not limited to the areas of thermodynamics, reaction kinetics, transport phenomena, process control, environment, energy, biotechnology, corrosion, separation science, powder technology, materials science, and chemical engineering education
Articles 10 Documents
Search results for , issue "Vol 20, No 2 (2020)" : 10 Documents clear
Methanol Dehydration to Dimethyl Ether over Modified γ-Al2O3 with Acid, Base and Zeolite (NaA and NaX) Maria Ulfah; Hendra Suherman; Melia Laniwati; IGBN Makertihartha; Subagjo Subagjo
ASEAN Journal of Chemical Engineering Vol 20, No 2 (2020)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.51354

Abstract

The effect of acids, bases, zeolite NaA and zeolite NaX impregnation to g-Al2O3 on the catalyst characteristics and activity against methanol dehydration reaction were investigated. The catalyst characteristics include N2 physisorption, X-ray diffraction (XRD), and temperature-programmed desorption of ammonia (NH3-TPD) in addition to catalytic dehydration of methanol performed in a micro fixed-bed reactor at 270°C and 1 atm. The results of XRD characterization showed no changes related to the modification of alumina over acids, bases, and zeolite NaA and zeolite NaX. Therefore, the modification did not have any effect on the crystalline structure of alumina. The textural and surface acidity of g-Al2O3 changed post addition of acids, bases, zeolite NaA and zeolite NaX. NH3-TPD analysis results demonstrated that synthesized g-Al2O3 has three types of acid sites: weak, medium, and strong; however, the weak acid sites were not observed on alumina catalysts modified phosphate, KOH, zeolite NaA, and zeolite NaX. Furthermore, the concentration of strong acid sites increased in the catalyst containing KOH. The catalytic test results showed that the untreated g-Al2O3 catalyst gave prominent activity in dehydration of methanol compared to the treated catalyst following the number and strength of acid sites. 
Synthesis and Characterization of New Eco-Friendly Fire-Retardants Based on Soda-Silicate Glass Ngoc Nguyen Nguyen; Vinh The La; Thanh Xuan Le; Suong Thu Huynh
ASEAN Journal of Chemical Engineering Vol 20, No 2 (2020)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.53954

Abstract

Fire-retardants (FRs) are additives used to improve the fire-resistance of combustible materials. New generations of FRs must be effective and eco-friendly. Traditional inorganic FRs are non-hazardous but have limited fire-retardancy. Here, we aim to develop an innovative way to enhance the fire-retardancy of inorganic FRs. We synthesized a new type of FRs, called mATH, whose compositions are similar to soda-silicate glass (xNa2O.yK2O.zSiO2.tAl2O3). When applied to unsaturated polyester resin, mATH showed a much better performance than traditional aluminum trihydroxide (ATH). The better performance of mATH originated from its new working mechanism. Dehydrated mATH, as a soda-silicate glass, melts under the heat of the fire, which causes heat sink and produces a molten glass. The molten glass forms a charred insulating layer that prevents oxygen from contacting the interior combustible materials. This phenomenon significantly contributes to the fire-retarding behavior of mATH. Our findings open a new method for developing effective eco-friendly FRs.
Study on the Removal of Odorous Gases from Composting Process using Local Bio-Media of Vietnam Nguyen Nhat Huy; Nguyen Thi Thuy; Lam Pham Thanh Hien; Nguyen Thi Thanh Hang; Vuong Bao Khuong; Le Thi Kim Phung; Nguyen Thi Le Lien
ASEAN Journal of Chemical Engineering Vol 20, No 2 (2020)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.54735

Abstract

Odor pollution is an increasing problem in Vietnam as a tropical country during the urbanization and industrialization. The odor from sewage systems, farms of poultry, pig, and beef, food processing companies, composting factory, and landfills is a severe problem in many nearby residential areas. In this study, two lab-scale biofiltration systems where pristine local bio-media and cultured bio-media with specially formulated microorganisms were employed in biofilters and bio-trickling filter for controls of odor (i.e., hydrogen sulfide and ammonia) from composting process were fabricated and operated. The odorous gas flow was created by composting solid waste collected from an agricultural market (i.e., mainly vegetable), containing low concentrations of 1.32 ± 0.32 mgNH3 m-3 and 5.20 ± 0.28 mgH2S m-3 under stable condition. For the biofilter model, commercial compost and cow manure were used as substrates and packed into the models. For the bio-trickling filter model, K3 bio-media with biofilm developed by contacting activated sludge was used as packing material. The results showed that adding specially formulated microorganisms could reduce adaption time and lead to slightly better odor control performance. Among the substrates, cow manure provided the highest odorous gas removal efficiency of ≥ 90% during the stable phase with the elimination capacity of 0.0492 gNH3 m-3 h-1 and 0.225 gH2S m-3 h-1. The study results show a high potential of cow manure biofilter for control of H2S and NH3 gases in the practical application under Vietnam’s condition.
Composite of Hydroxyapatite-Fe3O4 for the Adsorption of Methylene Blue Nur Hafizah Zainal Abidin; Nonni Soraya Sambudi; Norashikin Ahmad Kamal
ASEAN Journal of Chemical Engineering Vol 20, No 2 (2020)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.55015

Abstract

The utilization of hydroxyapatite as an adsorbent has been extensively tested to remove the dye and heavy metal. Yet the adsorbent loss to the environment may lead to secondary pollutant issues. Consequently, the hydroxyapatite was incorporated with Fe3O4 amount variation to solve the secondary pollutant problem by utilizing the magnetic properties of Fe3O4 to recollect the adsorbent. In this work, FESEM images showed a mixture of nano-sizes rods and spherical particles corresponded to the presence of hydroxyapatite and Fe3O4 as a composite. The study found that hydroxyapatite- Fe3O4 (100 wt %) could eliminate 12.434 mg methylene blue/g adsorbent after 4 hours. The hydroxyapatite also gained improvement in its surface area from 59.8m2/g to 75.2m2/g when Fe3O4 is added. In addition, the adsorption of methylene blue fits the Freundlich isotherms and pseudo-second-order kinetic model. Furthermore, the methylene blue removal using hydroxyapatite-Fe3O4 composite can be kept at 80% even after 4 times experiments, showing the recyclability of hydroxyapatite-Fe3O4.
Mathematical Model for Agglomeration Process of Milk Powder Sunatra Auamwong; Thongchai Rohitatisha Srinophakun
ASEAN Journal of Chemical Engineering Vol 20, No 2 (2020)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.55479

Abstract

Stickiness during milk spray drying can lead to the agglomeration of milk powder and damage the processing equipment. A mathematical model can achieve a better understanding. In this work, the Distinct Element Method (DEM) simultaneously with Computational Fluid Dynamics (CFD) was used to describe skim milk powder's agglomeration process. The study comprised 2 parts: surface stickiness mechanism and agglomeration of sticky powder. Start with particle formation, the droplet size, and the number of particles produced can be calculated and used to predict the droplet's surface stickiness. These reveal the effect of moisture content, droplet surface temperature, droplet size after drying, and sticky point temperature. Then, the agglomeration of sticky powder inside the spray chamber was predicted. Besides, the particle and fluid motion inside the spray chamber were also determined. Then, the particle size distribution after agglomeration was obtained. Furthermore, parts of the model were validated with the experimental data of Williams et al. (2009), which has three different droplet sizes, 56.8, 78.28, and 108.5 micrometers. The results gave the same trend as the sticky surface of the powder. The droplet's moisture contents rapidly decreased in the first period and fell to a critical value, which was 0.044, 0.048, and 0.061 kg water/kg solid, respectively. The periods of a sticky surface were around 0.033, 0.03, and 0.024 seconds. The largest droplet size was selected for the study of the agglomeration process. This model could predict the agglomeration of sticky powder since there were 216 from 900 droplets agglomerated. Moreover, the largest droplet size was 100.6 micrometers, and the most popular was 79.9 micrometers, which were the size of the un-agglomerated powder.
Convective Baking Characteristics and Effective Moisture Diffusivities of Yellow Mealworms Wei Hon Seah; Alecia Sze Mun Wong; Wei Qin Nie Naik; Chun Mun Tan; Choon Lai Chiang; Ching Lik Hii
ASEAN Journal of Chemical Engineering Vol 20, No 2 (2020)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.56358

Abstract

Yellow mealworm is an alternative protein source studied by researchers to provide an alternative supply of protein to meet the growing demands of human consumption. In this research, convective baking of yellow mealworms at 80°C, 100°C, and 120°C was carried out to study the baking kinetics and product quality. Studies showed the typical falling trend of the moisture ratio curves, which are typical for most bioproducts that undergo hot air treatment. Mathematical modelling showed that the Page model gave a good prediction on the baking kinetics with high fitting accuracy (R2>0.99). Effective diffusivities were determined from 1.66 x 10-11 to 2.88 x 10-11 m2/s within the temperatures tested. The activation energy was estimated at 15.7 kJ/mol based on the Arrhenius equation. The final baked samples appeared darker in color because the browning reaction and reduction in bulk density and product length were observed in the range of 48-54% and 3.0-16.3%, respectively.
Heating Characteristics of Palm Oil Industry Solid Waste and Plastic Waste Mixture using a Microwave Oven Novi Caroko; Harwin Saptoadi; Tri Agung Rohmat
ASEAN Journal of Chemical Engineering Vol 20, No 2 (2020)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.58503

Abstract

A microwave thermogravimetric analyzer was used to measure the characteristics of a mixture of palm oil solid waste (fiber, shell, and empty fruit bunch) and polyethylene terephthalate (PET). In the study, the range of palm oil solid waste composition ratios to PET used was 100:0, 75:25, 50:50, 25:75, and 0:100 (by weight). The study included the influence of the quality of raw material on the heating process. The mixture of palm oil solid waste (fiber, shell, and empty fruit bunch) and PET proved to impact the heating rate, mass-loss rate, and energy consumption. Based on the observation, empty fruit bunch-PET mixture had the highest heating rate (average 1.5039oC/s) than shell (average 0.6058oC/s), and fiber (0.9119oC/s) and also had the highest mass-loss rate (average 0.0253 g/s). The highest biomass (shell, empty fruit bunch, and fiber) and PET composition ratio give the highest rate of heating rate (average 1.8264oC/s) and mass-loss rate (average 0.02875 g/s). In addition, the increasing ratio of fixed carbon and material density will impact the increasing heating rate and mass-loss rate and decrease energy consumption. Therefore, fixed carbon and material gaps significantly affect the heating rate.
Thermochemical Characterization of Rice Husk (Oryza Sativa Linn) for Power Generation Nikdalila Radenahmad; Md Sumon Reza; Muhammad S. Abu Bakar; Abul K. Azad
ASEAN Journal of Chemical Engineering Vol 20, No 2 (2020)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.59267

Abstract

Rice husk is biomass that can be utilized as fuel for biomass gasification as a renewable energy source. In this paper, thermochemical methods were used to determine the higher heating values, moisture content, bulk density, pellet density, microstructure, and elemental composition of Thai Rice Husk (Oryza Sativa Linn). The heating energy was analyzed using a bomb calorimeter, which showed a higher heating value of 15.46 MJ/kg. Determination of pellet density through rice husk powder pelletization exhibited a value of 1.028 g/cm3, while moisture content was 5.017 wt%. The heating value and moisture content revealed good agreement with the literature values, indicating the potentiality of rice hush for energy generation. Scanning electron microscopy (SEM) showed that the raw rice husk and its ash have similar porosity types but different bulk structure.  Elemental analysis using energy dispersive X-ray (EDX) indicated that rice husk contains O, Si, C while O and C percentages were drastically decreased during combustion. The obtained heating value and moisture content proved that rice husk could be used as a bio-energy source in biomass gasification for power generation.
The Influence of Carbon Tax on the Feasibility of Industrial Project: A Case Study of Heat Exchanger Replacement at PT Kaltim Methanol Industri, Indonesia Wingo Wira Dewanatan; Muhammad Kurniawan Adiputra; Imam Karfendi Putro; Soni Hartanto; Jonas Kristanto; Muhammad Mufti Azis
ASEAN Journal of Chemical Engineering Vol 20, No 2 (2020)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.59515

Abstract

Petrochemical industries have faced growing pressure to decrease their carbon emission from direct and indirect sources. This work aims to demonstrate a carbon tax’s introduction to a feasibility study on the heat exchanger (HE) replacement project at PT Kaltim Methanol Industri, Indonesia. The project was aimed to avoid methanol release as much as 48.88 MT/year. The release of methanol can also be associated with CO2 emission with an emission factor of 0.6 ton CO2e/ton methanol. Here, we investigated the influence of inclusion and exclusion of carbon tax to monetize the CO2 release. From the project investment point of view, carbon tax inclusion is expected to increase the cost-saving. Introduction of the carbon tax as high as 10 USD/ton CO2e with 5% annual increase gives IRR value of 7.06% with Payout Time (PoT) of ca. 11 years. The IRR value without carbon tax scenario is 6.68 % with the same range of PoT. Hence, the inclusion of carbon tax may increase the feasibility of the project. This work has demonstrated the positive role of the carbon tax to increase the feasibility of a project which inlines with the national initiatives to curb the CO2 emission from chemical industries. It is also worth noting that introduction of carbon tax should be accompanied by a reorganization of government incentives, including several financial policies to create a conducive atmosphere for investors in Indonesia.
Compressive Strength and Water Absorption of Pavement Derived from Palm Oil Eco Processed Pozzolan (EPP) Material as Partial Cement Replacement Nurul Farhanah Mohd Kusaimi; Fazlena Hamzah; Junaidah Jai; Nurul Asyikin Md Zaki; Norliza Ibrahim
ASEAN Journal of Chemical Engineering Vol 20, No 2 (2020)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.60230

Abstract

Eco Processed Pozzolan (EPP) is derived from Spent Bleaching Earth (SBE) by the calcination process via heat treatment in the palm oil refining industry. EPP can be used as a partial replacement of cement as it contains a high amount of silica and has pozzolanic properties. Besides its properties, the sustainable production of EPP in the palm oil industry, abundantly available, and cheaper raw material have opened an opportunity to explore it as a cement substitute in pavement industries. This research aimed to study the properties of pozzolanic EPP and discover its potential as a partial substitute of cement in the pavement block's development. The compressive strength and water absorption of the formulated pavement block using EPP were analyzed in this study. Two sets of paving blocks were developed, namely, Set A, EPP was added as a partial replacement of the cement in pavement formulation at 20% - 90%, while in Set B, integration of EPP and Fly Ash (FA) was used as a partial replacement of the cement. The results indicated that the maximum addition of EPP into pavement formulation was 20%. The increment of EPP as a cement substitute in a formulation of more than 20% has reduced the compressive strength and increased the water absorption of the pavement. Simultaneously, the addition of FA and EPP in the formulation of hybrid pavement in Set B shows that the addition of FA has improved the compressive strength of the pavement and less water absorption was detected. The pavement’s highest compressive strength by addition of FA was 36MPa at the EPP was added of 15 – 20%. The study indicated that EPP could be used as a partial substitute of the cement, but addition of FA might require to improve pavement compressive strength.

Page 1 of 1 | Total Record : 10