cover
Contact Name
Sri Maryani
Contact Email
jmp_unsoed@yahoo.co.id
Phone
+628122119224
Journal Mail Official
jmp_unsoed@yahoo.co.id
Editorial Address
Jl. Dr. Soeparno No. 61 Kampus MIPA Karangwangkal Purwokerto Jawa tengah Indonesia 53123
Location
Kab. banyumas,
Jawa tengah
INDONESIA
Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
ISSN : 20851456     EISSN : 25500422     DOI : -
Core Subject : Education,
JMP is a an open access journal which publishes research articles, reviews, case studies, guest edited thematic issues and short communications/letters in all areas of mathematics, applied mathematics, applied commutative algebra and algebraic geometry, mathematical biology, physics and engineering, theoretical bioinformatics, experimental mathematics, theoretical computer science, numerical computation and applications of systems, partial differential and differential equations, integral and integral differential equations and mathematical modeling.
Articles 13 Documents
Search results for , issue "Vol 11 No 1 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika" : 13 Documents clear
KARAKTERISTIK SEGITIGA LUCAS Siti Rahmah Nurshiami; Ari Wardayani; Kana Hasmi Setiani
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 11 No 1 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika
Publisher : Jurusan Matematika FMIPA Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2020.12.1.1933

Abstract

Lucas triangle is an array of coeficients of a polynomial forming a pattern which is similar to Pascal triangle. This research studies Lucas triangle and its properties. The research results show that every row in Lucas triangle is begun by the number 1 and is ended by the number 2, the sum of the first n terms of number of 1th column is equal to the number at th row, 2nd column. Besides, the number at nth row and th column of Lucas triangle is for , the sum of the first n terms of number of jth column is equal to the number at th row, column for . The number of Lucas triangle is the sum of two number terms in preceded row, that is the number at th row, and the number at th row, . Then, the sum of coefficients of each row of Lucas triangle is . Full Article
TEOREMA TITIK TETAP UNTUK PEMETAAN KANNAN PADA RUANG METRIK MODULAR TERITLAK Harini, Lusi
Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 11 No 1 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika
Publisher : Jurusan Matematika FMIPA Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2020.12.1.2261

Abstract

In this paper, we will discuss about fixed point theorems in generalized modular metric space for Kannan-$D_\lambda$  type mapping. The existence of the fixed point of this mapping is guaranteed by providing that the mapping domain is a -finite set and the Kannan-$D_\lambda$  mapping constant $\alpha\in(0,1/2)$ satisfied $\alpha K<1$ where K is a constant from the axiom of generalized modular metric space.
KAJIAN METODE ORDINARY LEAST SQUARE DAN ROBUST ESTIMASI M PADA MODEL REGRESI LINIER SEDERHANA YANG MEMUAT OUTLIER Zahrotul Aflakhah; Jajang Jajang; Agustini Tripena Br. Sb.
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 11 No 1 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika
Publisher : Jurusan Matematika FMIPA Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2020.12.1.1934

Abstract

This research discusses about the Ordinary Least Squares (OLS) method and robust M-estimation method; compare between the Tukey bisquare and Huber weighting from simple linier regression models that contain outliers. Data are generated through simulation with the percentages of outliers and sample sizes. Each data will be formed into a simple linier regression model, then the percentage of outliers, RSE and MAD values are calculated. The results show that RSE and MAD values produced by a simple linear regression model with the OLS method are influenced by the percentage of outliers. However, the regression model of robust M-estimation with sample size 30, 60, 90, 120, and 150 results an unstable RSE values with the change of the percentage of outlier and the MAD values that are not affected by the percentage of outliers and sample size. The robust M-estimation method with Tukey Bisquare weighting is as good as the Huber weighting. Full Article
SIFAT ISOMORFIK PADA OPERASI TENSOR, BINTANG, CARTESIUS, DAN MODULAR DUA GRAF FUZZY Triyani Triyani; Bambang Hendriya Guswanto; Nurhayati nurhayati
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 11 No 1 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika
Publisher : Jurusan Matematika FMIPA Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2020.12.1.1935

Abstract

This article discusses about some isomorphic properties of tensor, star, Cartesius, and modular product operations of two fuzzy graphs. The results of research are the tensor product of two fuzzy graphs is isomorphic, and if and are complete fuzzy graphs then , , and . Full Article
PEMODELAN INDEKS PEMBANGUNAN MANUSIA DI PROVINSI JAWA TENGAH TAHUN 2017 MENGGUNAKAN ANALISIS REGRESI SPASIAL Wahyuni Alwi; Jajang Jajang; Nunung Nurhayati
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 11 No 1 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika
Publisher : Jurusan Matematika FMIPA Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2020.12.1.1936

Abstract

This research discussed about model of Human Development Index (HDI) in Central Java with spatial regression analysis. and identify variables that give significant influence. First, analyze the influence factors based on result of p-value from t test in multiple linear regression models. Then, made spatial weight matrix with queen continguity method. After that, estimate spatial regression models, namely spatial autoregressive (SAR), Spatial error models (SEM), and spatial autoregive moving average (SARMA) and choose the best model based on minimum AIC value. The results showed that SAR was the best spatial regression model and the significant variables was the gross enrollment rates at senior high schools, the health workers, and the district minimum wages. All of them that give positive influences. The variable that give biggest influence for HDI was the health workers. Full Article
ANALISIS PERSEPSI DAN HUBUNGAN PRESTASI BELAJAR MATEMATIKA DENGAN PRESTASI BAHASA PEMROGRAMAN Herlina Herlina; Teady Matius Surya Mulyana
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 11 No 1 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika
Publisher : Jurusan Matematika FMIPA Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2020.12.1.1932

Abstract

Mathematics is the basis before learning coding-based courses. This type of research is quantitative descriptive. Sample of 110 informatics engineering students. The results of the study showed a significant association of learning outcomes in mathematics with the achievement of learning programming languages. The magnification coefficient of 0.663 has a moderate and positive meaning. The contribution of mathematics in explaining programming languages ​​is 43.97% and the remaining 56.03% is accepted by other variables. Students' perceptions of mathematics and programming languages ​​consist of four levels of understanding, namely the five senses, analysis, interpretation and evaluation. Every level of dimension. On the sensory dimension of 31.9% mathematics has a close relationship with programming languages. In the dimensions of analysis and interpretation, the value of the percentage of perceptions that are almost the same namely 21.24% and 21.14% associate mathematical concepts with the concepts of programming languages. In the evaluation dimension of 20.6%, it shows that in programming languages, students need information other than mathematics, namely the purpose of the programming language that is being designed. Full Article
STRUKTUR IMAGE DAN PRE-IMAGE HOMOMORFISMA PADA TRANSLASI RING FUZZY INTUITIONISTIK Dian Pratama
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 11 No 1 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika
Publisher : Jurusan Matematika FMIPA Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2020.12.1.1937

Abstract

A set that is characterized by membership function and a non-membership function with the sum of both at intervals of 0 to 1 is called intuitionistik fuzzy set.. When it’s applied in ring’s theory, it will called intuitionistic fuzzy ring. In this research,if the topics is membership fuction and non-membership function then there are translates operator. This operator only changes the values of the membership and non-membership function while the properties are fixed. This journal discussed the structure of image ad pre-image homomorphism of translates on intuitionistic fuzzy rings. The result obtained that the structure of image and pre-image is also intuitionistic fuzzy rings. Full Article
ANALISIS PERSEPSI DAN HUBUNGAN PRESTASI BELAJAR MATEMATIKA DENGAN PRESTASI BAHASA PEMROGRAMAN Herlina, Herlina; Surya Mulyana, Teady Matius
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 11 No 1 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2020.12.1.1932

Abstract

ABSTRACT. Mathematics is the basis before learning coding-based courses. This type of research is quantitative descriptive. Sample of 110 informatics engineering students. The results of the study showed a significant association of learning outcomes in mathematics with the achievement of learning programming languages. The magnification coefficient of 0.663 has a moderate and positive meaning. The contribution of mathematics in explaining programming languages is 43.97% and the remaining 56.03% is accepted by other variables. Students' perceptions of mathematics and programming languages consist of four levels of understanding, namely the five senses, analysis, interpretation and evaluation. Every level of dimension. On the sensory dimension of 31.9% mathematics has a close relationship with programming languages. In the dimensions of analysis and interpretation, the value of the percentage of perceptions that are almost the same namely 21.24% and 21.14% associate mathematical concepts with the concepts of programming languages. In the evaluation dimension of 20.6%, it shows that in programming languages, students need information other than mathematics, namely the purpose of the programming language that is being designed.Keywords: Mathematics, Programming Language, Learning Achievement, Perception. ABSTRAK. Matematika merupakan dasar sebelum belajar mata kuliah berbasis koding. Jenis penelitian adalah deskriptif kuantitatif. Sampel 110 mahasiswa teknik informatika. Hasil penelitian menunjukkan adanya hubungan signifikan prestasi belajar matematika dengan prestasi belajar bahasa pemrograman. Koefisien korelasi sebesar 0,663 memiliki arti sedang dan positif. Kontribusi matematika dalam menjelaskan bahasa pemrograman sebesar 43,97% dan sisanya 56,03% dijelaskan oleh variabel lain. Persepsi mahasiswa mengenai hubungan matematika dan dengan bahasa pemrograman, terdiri dari empat tingkatan yaitu panca indra, analisa, interprestasi dan evaluasi. Setiap tingkatan dimensi variabel persepsi memiliki persentase yang makin kecil. Pada dimensi panca indra sebesar 31,9% matematika memiliki hubungan yang erat dengan bahasa pemrograman. Pada dimensi analisa dan interprestasi, nilai persentase persepsi yang hampir sama yaitu 21,24% dan 21,14% mengaitkan konsep matematika dengan konsep bahasa pemrograman. Pada dimensi evaluasi sebesar 20,6% menunjukkan bahwa dalam evaluasi bahasa pemrograman, mahasiswa memerlukan informasi lain selain dari matematika yaitu tujuan dari bahasa pemroragraman yang sedang di rancang. Kata Kunci: Matematika, Bahasa Pemrograman, Prestasi Belajar, Persepsi.
KARAKTERISTIK SEGITIGA LUCAS Nurshiami, Siti Rahmah; Wardayani, Ari; Setiani, Kana Hasmi
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 11 No 1 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2020.12.1.1933

Abstract

ABSTRACT. Lucas triangle is an array of coeficients of a polynomial forming a pattern which is similar to Pascal triangle. This research studies Lucas triangle and its properties. The research results show that every row in Lucas triangle is begun by the number 1 and is ended by the number 2, the sum of the first n terms of number of 1th column is equal to the number at (n+1)th row, 2nd column. Besides, the number at nth row and (n-2)th column of Lucas triangle is (n-1)^2 for n≥2, the sum of the first n terms of number of jth column is equal to the number at (n+1)th row, (j+1)^th column for j≥1. The number of Lucas triangle is the sum of two number terms in preceded row, that is the number at (n-1)th row, (j-1)^th and the number at (n-1)th row, j^th. Then, the sum of coefficients of each n^th row of Lucas triangle is .Keywords: Pascal triangle, Lucas number, Lucas triangle. ABSTRAK. Segitiga Lucas merupakan susunan koefisien-koefisien dari suatu polinomial yang disusun membentuk pola segitiga memyerupai segitiga Pascal. Penelitian ini mengkaji segitiga Lucas dan karakteristik dari segitiga Lucas. Hasil penelitian menunjukkan bahwa, setiap baris pada segitiga Lucas diawali dengan angka 1 dan diakhiri dengan angka 2, jumlah dari n suku bilangan pertama pada kolom ke-1 sama dengan bilangan pada baris ke- kolom ke-2. Selain itu, bilangan pada baris ke- kolom ke- pada segitiga Lucas adalah untuk , jumlah n suku bilangan pertama pada kolom ke-j sama dengan bilangan pada baris ke- kolom ke- untuk . Bilangan pada segitiga Lucas merupakan penjumlahan dari dua suku bilangan pada baris sebelumnya, yaitu bilangan pada baris ke- kolom ke- dan bilangan pada baris ke- kolom ke-j. Kemudian, jumlah koefisien setiap baris ke-n pada segitiga Lucas adalah .Kata Kunci: Segitiga Pascal, Bilangan Lucas, Segitiga Lucas
KAJIAN METODE ORDINARY LEAST SQUARE DAN ROBUST ESTIMASI M PADA MODEL REGRESI LINIER SEDERHANA YANG MEMUAT OUTLIER Aflakhah, Zahrotul; Jajang, Jajang; Br. Sb., Agustini Tripena
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 11 No 1 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2020.12.1.1934

Abstract

ABSTRACT. This research discusses about the Ordinary Least Squares (OLS) method and robust M-estimation method; compare between the Tukey bisquare and Huber weighting from simple linier regression models that contain outliers. Data are generated through simulation with the percentages of outliers and sample sizes. Each data will be formed into a simple linier regression model, then the percentage of outliers, RSE and MAD values are calculated. The results show that RSE and MAD values produced by a simple linear regression model with the OLS method are influenced by the percentage of outliers. However, the regression model of robust M-estimation with sample size 30, 60, 90, 120, and 150 results an unstable RSE values with the change of the percentage of outlier and the MAD values that are not affected by the percentage of outliers and sample size. The robust M-estimation method with Tukey Bisquare weighting is as good as the Huber weighting.Keywords: MAD, OLS model, outlier, robust regression M-estimation method, RSE. ABSTRAK. Penelitian ini mengkaji metode OLS dan robust estimasi M serta membandingkan fungsi pembobot Bisquare Tukey dan Huber dari model regresi linier sederhana yang memuat outlier. Data dibangkitkan melalui simulasi dengan persentase besarnya outlier dan ukuran sampel yang berbeda-beda. Masing-masing dari data tersebut dibentuk model regresi linier sederhana dan dihitung besarnya persentase outlier, nilai RSE dan MAD. Hasil penelitian menyatakan bahwa nilai RSE dan MAD yang dihasilkan oleh model regresi linier sederhana dengan metode OLS dipengaruhi oleh persentase besarnya outlier. Namun, nilai RSE yang dihasilkan oleh model regresi robust estimasi M untuk ukuran sampel 30, 60, 90, 120, dan 150 cenderung fluktuatif seiring dengan perubahan besarnya persentase outlier. Sementara itu, nilai MAD yang dihasilkan oleh model regresi robust estimasi M tidak dipengaruhi oleh besarnya persentase outlier maupun ukuran sampel. Metode robust estimasi M dengan fungsi pembobot Bisquare Tukey hampir sama baiknya dengan metode robust estimasi M dengan fungsi pembobot Huber.Kata Kunci: MAD, metode OLS, outlier, regresi robust estimasi M, RSE.

Page 1 of 2 | Total Record : 13


Filter by Year

2019 2020


Filter By Issues
All Issue Vol 17 No 1 (2025): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 16 No 2 (2024): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 16 No 1 (2024): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 15 No 2 (2023): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 15 No 1 (2023): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 14 No 2 (2022): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 14 No 1 (2022): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 14 No 1 (2022): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 13 No 2 (2021): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 13 No 2 (2021): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 13 No 1 (2021): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 13 No 1 (2021): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 12 No 2 (2020): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 12 No 2 (2020): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 12 No 1 (2020): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 12 No 1 (2020): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 11 No 1 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 11 No 1 (2019): JMP Edisi Juni 2019 Vol 11 No 2 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 11 No 2 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 11 No 1 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 10 No 2 (2018): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 10 No 2 (2018): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 10 No 1 (2018): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 10 No 1 (2018): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 9 No 2 (2017): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 9 No 2 (2017): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 9 No 1 (2017): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 9 No 1 (2017): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 8 No 2 (2016): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 8 No 2 (2016): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 8 No 1 (2016): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 8 No 1 (2016): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 7 No 1 (2015): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 7 No 1 (2015): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 6 No 2 (2014): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 6 No 2 (2014): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 6 No 1 (2014): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 6 No 1 (2014): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 5 No 1 (2013): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 5 No 1 (2013): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 4 No 2 (2012): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 4 No 2 (2012): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 4 No 1 (2012): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 4 No 1 (2012): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 3 No 1 (2011): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 3 No 1 (2011): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 1 No 2 (2009): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 1 No 2 (2009): Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 1 No 1 (2009): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 1 No 1 (2009): Jurnal Ilmiah Matematika dan Pendidikan Matematika More Issue