cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Electrical Engineering and Computer Science
ISSN : 25024752     EISSN : 25024760     DOI : -
Core Subject :
Arjuna Subject : -
Articles 64 Documents
Search results for , issue "Vol 26, No 3: June 2022" : 64 Documents clear
A new application for fast prediction and protection of electrical drive wheel speed using machine learning methodology Medjdoub Khessam; Abdelkader Lousdad; Abdeldjebar Hazzab; Miloud Rezkallah; Ambrish Chandra
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i3.pp1290-1298

Abstract

This paper introduces a non-linear implementation of the speed control technique of permanent magnetic synchronous motors (PMSM) using electronic differential (ED) command. Artificial neural network (ANN) coupled with particles swarm optimization (ANN-PSO) are implemented to control wheel speed and steering angle. The main purpose of the PMSM system and its application is the command of electric vehicles (EV). In the controller design, three-phase currents and rotor speed shall be measurable and eligible for feedback. Our propulsion platform consists of two PMSM in the back. The study with implemented ANN-PSO is performed after collecting the data from the ED to manage the control of speed EV, Left and right of steering angle and steering ahead. Based on this strategy, a new application can be provided in the GPS application to give the information as input (curved path angle) to ANN-PSO. Next, the application of ANN-PSO can estimate the parameters of ED to avoid the slip, as well as improves better performance and dynamic stability of electric vehicle drive systems.
Predictive and probabilistic modelling using machine learning for building indoor climate control Shokhjakhon Abdufattokhov; Nurilla Mahamatov; Kamila Ibragimova; Dilfuza Gulyamova
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i3.pp1306-1314

Abstract

For the last few decades, thermal comfort has been considered an aspect of sustainable building evaluation methods and tools. However, estimating the indoor air temperature of buildings is a complicated task due to the nonlinear behaviour of heating, ventilation and air conditioning systems combined with complex dynamics characterized by the time-varying environment with disturbances. This issue can be alleviated by modelling the building dynamics using Gaussian processes since it also measures the uncertainty bounds. The main focus of this paper is designing a predictive and probabilistic room temperature model of buildings using Gaussian processes and incorporating it into model predictive control to minimize energy consumption and provide thermal comfort satisfaction. We exploited the Gaussian processes’ full probabilistic capabilities as the mean prediction for the room temperature model and used the model uncertainty in the objective function not to lose the desired performance and to design a robust control scheme. We illustrated the potentials of the proposed method in a numerical example with simulation results.
Perspectives on adherence to ethics standards and behaviour in software development Senyeki Milton Marebane; Robert Toyo Hans; Jacqui Coosner
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i3.pp1573-1580

Abstract

Considering the powerful position assumed in creating software that changes human lives and society; it is compelling that in addition to technical standards, ethical standards, especially those captured in codes of ethics and practice be adhered to by software engineers. Despite efforts by professional bodies on ethical standards awareness, it is alleged that software engineers are not able to uphold ethical standards in software development projects. This research study probed lecturers concerned with the teaching of software development courses to determine their perceived levels of ethical standards and behavior. The findings show that the importance of ethical standards is recognized. The respondents reported high levels of ethical standards of their own work, colleagues’ work and their students’ work. Although in general the respondents reported high ethical standards, elements of lesser perceived ethical standards on students indicate the need for improvements. The findings of the study are important to educators and industry to recognize the significance of levels of ethics standards and the role educators have in terms of inculcating such ethical standards early in the making of future software engineers.
Enhancement in privacy preservation in cloud computing using apriori algorithm Raniah Ali Mustafa; Haitham Salman Chyad; Jinan Redha Mutar
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i3.pp1747-1757

Abstract

Cloud computing provides advantages, like flexibly of space, security, cost optimization, accessibility from any remote location. Because of this factor cloud computing is emerging as in primary data storage for individuals as well as organisations. At the same time, privacy preservation is an also a significant aspect of cloud computing. In regrades to privacy preservation, association rule mining was proposed by previous researches to protect the privacy of users. However, the algorithm involves creation of fake transaction and this algorithm also fails to maintain the privacy of data frequency. In this research an apriori algorithm is proposed to enhance the privacy of encrypted data. The proposed algorithm is integrated with elagmal cryptography and it does not require fake transactions. In this way, the proposed algorithm improves the data protection as well as query privacy and it hides data frequency. Result analysis shows that the proposed algorithm improves the privacy as compared to previously proposed association rule mining and the algorithm also shows 3% to 5% improvement in performance when compared to other existing algorithms. This performance analysis with varying number of the data and fake transactions shows that the proposed algorithm doesn’t require fake transactions, like data privacy association rule mining.
An approach for metadata extraction and transformation for various data sources using R programming language Forat Falih Hasan; Muhamad Shahbani Abu Bakar
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i3.pp1520-1529

Abstract

The metadata system is the key system for sharing and transforming data between various information systems (ISs), and each database system has its own structure for storing and retrieving metadata information. Metadata information must be extracted for data transformation. Furthermore, these procedures were required to communicate with each type of database system and retrieve the stored metadata; these processes required much information and effort. To overcome the challenge of accessing and extracting metadata from any type of data source, a unifomed method must be developed and integrated into any organization's information systems. The semi-structured data extraction method (SeDEM) is a developed method that includes three main operations: logical structure operation, unique key operation, and relationships operation. Finally, the accurate information obtained using the SeDEM addressed data quality issues concerning the integrity and completeness of the data transformation.
Design of elderly-assistant mobile servant robot Minh Son Nguyen; The Tung Than; Tri Nhut Do; Hoai Nhan Nguyen
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i3.pp1338-1350

Abstract

Recently, elderly population increasing worldwide has put higher pressure on health-care providers and their families. The advent of elderly care robots will reduce that pressure. In this paper, a design of mobile servant robot with integrated tracking algorithm in order to assist the elderly by companionship is proposed not only to help families take care of their elderly at home but also reduce the pressure on health-care providers. The proposed robot is based on humanoid structure and AI-embedded-GPU controller. The design allows the robot to follow the elderly and accompany them in real-time. In addition, the video streaming algorithm with the pipeline mechanism is integrated on robot controllers so that the owner interacts with the elderly through the internet. The robot controller is embedded into hardware of 128 graphics processing unit cores and 4 ARM Cortex-A9 cores in order to execute convolutional neural network (NCNN) algorithms for elderly recognition and body tracking. The processing speed at 14 fps of video stream in real-time. The proposed robot can move on uneven surfaces with a speed at 0.21 m/s and an accuracy over 90%. However, the video stream processing speed is able to be reduced at 15 fps and latency less than 415 ms when four users appear concurrently.
Optimum control for dynamic voltage restorer based on particle swarm optimization algorithm Saddam Subhi Salman; Abdulrahim Thiab Humod; Fadhil A. Hasan
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i3.pp1351-1359

Abstract

This article addresses a variety of power quality concerns, including voltage sag and swell, surges, harmonics, and so on, utilizing a dynamic voltage restorer (DVR). The proposed controller for DVR is proportional plus integral (PI) controller. Two methods are used for tuning the parameters of PI controller, trial and error and intelligent optimal method. The utilized optimal method is particle swarm optimization (PSO) method. Results depicted that DVR using PI controller tuned by PSO has improved performance than PI controller tuned by trial and error in term of rise time, maximum overshoot and settling time, as well as total harmonic distortion (THD). These improvements are applicable for voltage sag and swell conditions.
Artificial neural network modeling for predicting the quality of water in the Sabak Bernam River Faqihah Affandi; Mohamad Faizal Abd Rahman; Adi Izhar Che Ani; Mohd Suhaimi Sulaiman
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i3.pp1616-1623

Abstract

Water quality prediction is aided by environmental monitoring, ecological sustainability, and aquaculture. Traditional prediction approaches capture the nonlinearity and non-stationarity of water quality well. Due to their rapid progress, artificial neural networks (ANNs) have become a hotspot in water quality prediction in recent years. ANNs are utilised in this study to predict water quality using soft computing techniques. The feedforward network and the standard back-propagation method of Levenberg-Marquardt and scaled conjugate gradient learning algorithm were employed in this research. One hidden layer has been recommended for the modelling, with the number of hidden neurons set at 3, 24, and 49. For this analysis, six different testing percentages were used, and the output data can be categorised as '0' for clean water and '1' for polluted water. From the results, it can be shown that the most optimised model was from the model of trainlm with a testing percentage of 18% and with 3 number of neurons. This most optimised model obtains an accuracy of 91.7%, the best validation performance of 0.073346 with 24 epochs, and having a receiver operating characteristic (ROC) curve that is closer to the true positive rate compared to other samples.
Knowledge discovery in manufacturing datasets using data mining techniques to improve business performance Amani Gomaa Shaaban; Mohamed Helmy Khafagy; Mohamed Abbas Elmasry; Heba El-Beih; Mohamed Hasan Ibrahim
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i3.pp1736-1746

Abstract

Recently due to the explosion in the data field, there is a great interest in the data science areas such as big data, artificial intelligence, data mining, and machine learning. Knowledge gives control and power in numerous manufacturing areas. Companies, factories, and all organizations owners aim to benefit from their huge; recorded data that increases and expands very quickly to improve their business and improve the quality of their products. In this research paper, the knowledge discovery in databases (KDD) technique has been followed, “association rules” algorithms “Apriori algorithm”, and “chi-square automatic interaction detection (CHAID) analysis tree” have been applied on real datasets belonging to (Emisal factory). This factory annually loses tons of production due to the breakdowns that occur daily inside the factory, which leads to a loss of profit. After analyzing and understanding the factory product processes, we found some breakdowns occur a lot of days during the product lifecycle, these breakdowns affect badly on the production lifecycle which led to a decrease in sales. So, we have mined the data and used the mentioned methods above to build a predictive model that will predict the breakdown types and help the factory owner to manage the breakdowns risks by taking accurate actions before the breakdowns happen.
Word recognition and automated epenthesis removal for Indonesian sign system sentence gestures Erdefi Rakun; I Gusti Bagus Hadi Widhinugraha; Noer Fitria Putra Setyono
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i3.pp1402-1414

Abstract

This research focuses on building a system to translate continuous Indonesian sign system (SIBI) gestures into text. In a continuous gesture, a signer will add an epenthesis (transitional) gesture, which is hand movement with no meaning but needed to connect the hand movement of one word with the next word in a continuous gesture. Reducing the number of irrelevant inputs to the model through automated epenthesis removal can improve the system's ability to recognize the words in continuous gestures. We implemented threshold conditional random fields (TCRF) to identify epenthesis gestures. The dataset consists of 2,255 videos representing 28 common sentences in SIBI. The translation system consists of MobileNetV2 as a feature extraction technique, removing epenthesis gestures found by the TCRF, and a long short-term memory (LSTM) for the classifier. With the MobileNetV2-TCRF-bidirectional LSTM model, the best word error rate (WER) and sentence accuracy (SAcc) were 33.4% and 16.2%, respectively. Intermediate-stage processing steps consisting of sandwiched majority voting of the TCRF and the removal of word labels whose number of frames is less than two frames, along with LSTM output grouping, were able to reduce WER from 33.4% to 3.4% and increase SAcc from 16.2% to 80.2%.

Filter by Year

2022 2022


Filter By Issues
All Issue Vol 40, No 2: November 2025 Vol 40, No 1: October 2025 Vol 39, No 3: September 2025 Vol 39, No 2: August 2025 Vol 39, No 1: July 2025 Vol 38, No 3: June 2025 Vol 38, No 2: May 2025 Vol 38, No 1: April 2025 Vol 37, No 3: March 2025 Vol 37, No 2: February 2025 Vol 37, No 1: January 2025 Vol 36, No 3: December 2024 Vol 36, No 2: November 2024 Vol 36, No 1: October 2024 Vol 35, No 3: September 2024 Vol 35, No 2: August 2024 Vol 35, No 1: July 2024 Vol 34, No 3: June 2024 Vol 34, No 2: May 2024 Vol 34, No 1: April 2024 Vol 33, No 3: March 2024 Vol 33, No 2: February 2024 Vol 33, No 1: January 2024 Vol 32, No 3: December 2023 Vol 32, No 1: October 2023 Vol 31, No 3: September 2023 Vol 31, No 2: August 2023 Vol 31, No 1: July 2023 Vol 30, No 3: June 2023 Vol 30, No 2: May 2023 Vol 30, No 1: April 2023 Vol 29, No 3: March 2023 Vol 29, No 2: February 2023 Vol 29, No 1: January 2023 Vol 28, No 3: December 2022 Vol 28, No 2: November 2022 Vol 28, No 1: October 2022 Vol 27, No 3: September 2022 Vol 27, No 2: August 2022 Vol 27, No 1: July 2022 Vol 26, No 3: June 2022 Vol 26, No 2: May 2022 Vol 26, No 1: April 2022 Vol 25, No 3: March 2022 Vol 25, No 2: February 2022 Vol 25, No 1: January 2022 Vol 24, No 3: December 2021 Vol 24, No 2: November 2021 Vol 24, No 1: October 2021 Vol 23, No 3: September 2021 Vol 23, No 2: August 2021 Vol 23, No 1: July 2021 Vol 22, No 3: June 2021 Vol 22, No 2: May 2021 Vol 22, No 1: April 2021 Vol 21, No 3: March 2021 Vol 21, No 2: February 2021 Vol 21, No 1: January 2021 Vol 20, No 3: December 2020 Vol 20, No 2: November 2020 Vol 20, No 1: October 2020 Vol 19, No 3: September 2020 Vol 19, No 2: August 2020 Vol 19, No 1: July 2020 Vol 18, No 3: June 2020 Vol 18, No 2: May 2020 Vol 18, No 1: April 2020 Vol 17, No 3: March 2020 Vol 17, No 2: February 2020 Vol 17, No 1: January 2020 Vol 16, No 3: December 2019 Vol 16, No 2: November 2019 Vol 16, No 1: October 2019 Vol 15, No 3: September 2019 Vol 15, No 2: August 2019 Vol 15, No 1: July 2019 Vol 14, No 3: June 2019 Vol 14, No 2: May 2019 Vol 14, No 1: April 2019 Vol 13, No 3: March 2019 Vol 13, No 2: February 2019 Vol 13, No 1: January 2019 Vol 12, No 3: December 2018 Vol 12, No 2: November 2018 Vol 12, No 1: October 2018 Vol 11, No 3: September 2018 Vol 11, No 2: August 2018 Vol 11, No 1: July 2018 Vol 10, No 3: June 2018 Vol 10, No 2: May 2018 Vol 10, No 1: April 2018 Vol 9, No 3: March 2018 Vol 9, No 2: February 2018 Vol 9, No 1: January 2018 Vol 8, No 3: December 2017 Vol 8, No 2: November 2017 Vol 8, No 1: October 2017 Vol 7, No 3: September 2017 Vol 7, No 2: August 2017 Vol 7, No 1: July 2017 Vol 6, No 3: June 2017 Vol 6, No 2: May 2017 Vol 6, No 1: April 2017 Vol 5, No 3: March 2017 Vol 5, No 2: February 2017 Vol 5, No 1: January 2017 Vol 4, No 3: December 2016 Vol 4, No 2: November 2016 Vol 4, No 1: October 2016 Vol 3, No 3: September 2016 Vol 3, No 2: August 2016 Vol 3, No 1: July 2016 Vol 2, No 3: June 2016 Vol 2, No 2: May 2016 Vol 2, No 1: April 2016 Vol 1, No 3: March 2016 Vol 1, No 2: February 2016 Vol 1, No 1: January 2016 Vol 16, No 3: December 2015 Vol 16, No 2: November 2015 Vol 16, No 1: October 2015 Vol 15, No 3: September 2015 Vol 15, No 2: August 2015 Vol 15, No 1: July 2015 Vol 14, No 3: June 2015 Vol 14, No 2: May 2015 Vol 14, No 1: April 2015 Vol 13, No 3: March 2015 Vol 13, No 2: February 2015 Vol 13, No 1: January 2015 Vol 12, No 12: December 2014 Vol 12, No 11: November 2014 Vol 12, No 10: October 2014 Vol 12, No 9: September 2014 Vol 12, No 8: August 2014 Vol 12, No 7: July 2014 Vol 12, No 6: June 2014 Vol 12, No 5: May 2014 Vol 12, No 4: April 2014 Vol 12, No 3: March 2014 Vol 12, No 2: February 2014 Vol 12, No 1: January 2014 Vol 11, No 12: December 2013 Vol 11, No 11: November 2013 Vol 11, No 10: October 2013 Vol 11, No 9: September 2013 Vol 11, No 8: August 2013 Vol 11, No 7: July 2013 Vol 11, No 6: June 2013 Vol 11, No 5: May 2013 Vol 11, No 4: April 2013 Vol 11, No 3: March 2013 Vol 11, No 2: February 2013 Vol 11, No 1: January 2013 Vol 10, No 8: December 2012 Vol 10, No 7: November 2012 Vol 10, No 6: October 2012 Vol 10, No 5: September 2012 Vol 10, No 4: August 2012 Vol 10, No 3: July 2012 More Issue