cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Electrical Engineering and Computer Science
ISSN : 25024752     EISSN : 25024760     DOI : -
Core Subject :
Arjuna Subject : -
Articles 66 Documents
Search results for , issue "Vol 35, No 2: August 2024" : 66 Documents clear
DNA computing and meta-heuristic-based algorithm for big data task scheduling in cloud computing Gandhimathinathan, Visalaxi; Alagesan, Muthukumaravel
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 2: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i2.pp1131-1138

Abstract

With the advent of cloud computing, there is a need to enhance both the methods and algorithms of big data workloads for task scheduling. Due to the global spread of services with changing task load circumstances and different cloud client demands, big data task scheduling in cloud systems is a time-consuming process. The proposed approach emphasises the necessity for efficient big data task scheduling in the cloud computing, which exacerbate data processing. Virtual machines frequently utilise all three types of physical resources: CPU, memory, and storage. Big data task scheduling is one of the most important implications of cloud computing application resource management, and this research work meticulously offers a task scheduling technique for advancing cloud computing.
Android malware detection using GIST based machine learning and deep learning techniques Udayakumar, Ponnuswamy; Yalamati, Srilatha; Mohan, Lavadiya; Haque, Mohd Junedul; Narkhede, Gaurav; Bhashyam, Krishna Mohan
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 2: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i2.pp1244-1252

Abstract

In today’s digital world, Android phones play a vital part in a variety of facets of both professionals and individuals’ personal and professional lives. Android phones are great for getting things done faster and more organized. The proportionate increase in the number of malicious applications has also been seen to be expanding. Since the play store offers millions of apps, detection of malware apps is challenging task. In this paper, a methodology is introduced for detecting malware in Android applications through the utilization of global image shape transform (GIST) features extracted from grayscale images of the applications. The dataset comprises samples of both malware and benign apps collected from the virus share website. After converting the apps into grayscale images, GIST features are extracted to capture their global spatial layout. Various machine learning (ML) algorithms, such as logistic regression (LR), k-nearest neighbour (KNN), AdaBoost, decision tree (DT), Naïve Bayes (NB), random forest (RF), support vector machine (SVM), extra tree classifier (ETC), and gradient boosting (GB), are employed to classify the applications according to their GIST features. Furthermore, a feed forward neural network (FFNN) is utilized as a deep learning (DL) technique to further improve the accuracy of classification. The performance of each algorithm is evaluated using metrics such as accuracy, precision and recall. The results demonstrated that the FFNN achieves superior accuracy compared to traditional ML classifiers, indicating its effectiveness in detecting malware in Android apps.
Automatic detection and prediction of signal strength degradation in urban areas using data-driven machine learning El Moudden, Ibrahim; Benmessaoud, Youssef; Chentouf, Abdellah; Cherrat, Loubna; Mohammed Rida, Ech-Charrat; Ezziyyani, Mostafa
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 2: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i2.pp958-970

Abstract

Signal strength degradation represents a variation in the coverage area for radio networks. Building maps that represent this degradation requires collecting information about signal coverage in scattered locations, which can be done conventionally by measurement methods such as the manual drive test. Nevertheless, as this process is large-scale, time-consuming, and costly, several methods for the minimization of drive tests have been introduced. In this study, our methodology first consisted of dividing the study area into several zones, and each zone into several sectors without considering the position of the existing broadcast base station. Then, we developed a custom mobile application to collect the signal strength data and the location coordinates of the concerned area. For data collection, we deployed the mobile application on more than 10 users' phones, who navigated in different areas using their cars. We applied the gradient-boosted trees algorithm to predict signal strength degradation in different areas. Our model has shown some interesting results after studying and analyzing the collected data, based on data mining algorithms. We also evaluated our model's ability to predict the zone's structure according to the strength of the degradation signal.
Development and modification Sobel edge detection in tuberculosis X-ray images Devita, Retno; Fitri, Iskandar; Yuhandri, Yuhandri; Yani, Finny Fitry
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 2: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i2.pp1191-1200

Abstract

Tuberculosis (TB), a major global health threat caused by mycobacterium tuberculosis, claims lives across all age groups, underscoring the urgent need for accurate diagnostic methods. Traditional TB diagnosis using X-ray images faces challenges in detection accuracy, highlighting a critical problem in medical imaging. Addressing this, our study investigates the use of image processing techniques-specifically, a dataset of 112 TB X-ray images-employing pre-processing, segmentation, edge detection, and feature extraction methods. Central to our method is the adoption of a modified Sobel edge detection technique, named modification and extended magnitude gradient (MEMG), designed to enhance TB identification from X-ray images. The effectiveness of MEMG is rigorously evaluated against the gray-level co-occurrence matrix (GLCM) parameters, contrast, and correlation, where it demonstrably surpasses the standard Sobel detection, amplifying the contrast value by over 50% and achieving a correlation value nearing 1. Consequently, the MEMG method significantly improves the clarity and detail of TB-related anomalies in X-ray images, facilitating more precise TB detection. This study concludes that leveraging the MEMG technique in TB diagnosis presents a substantial advancement over conventional methods, promising a more reliable tool for combating this global health menace.
Design and fabrication of S-band power amplifier for wireless sensor networks Hoi, Tran Van; Lanh, Ngo Thi; Duong, Bach Gia
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 2: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i2.pp979-986

Abstract

This paper discusses the process of designing and manufacturing a wideband power amplifier operating in the S-band. To amplify a low power and broadband radio frequency signals from 2.1 GHz to 2.5 GHz, the proposed power amplifier uses a diagram of a two-stages amplification with peak offset amplification frequency 2.3 GHz. The power amplifier is designed with a center frequency difference of 2.2 GHz and 2.4 GHz respectively to achieve a bandwidth of 400 MHz. The proposed power amplifier (PA) uses RF transistor SHF-0589 using gallium arsenide heterostructure field-effect transistor (GaAs HFET) technology for high gain and low power consumption. The complete amplifier achieves power gain 21.1 dB inband 2.1-2.5 GHz and achieve maximum power gain of 22.5 dB at the frequency of 2.4 GHz; the output power rise up to 33 dBm; input reflection coefficient (S11) reaches -19.2 dB and output reflection coefficient reaches -17.2 dB. The designed amplifier circuit can be used for wireless sensor networks operating at S-band.
Complexity analysis of the VVenC versus VVC encoder Touzani, Hajar; Errahimi, Fatima; Mansouri, Anass; Ahaitouf, Ali
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 2: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i2.pp898-906

Abstract

The joint video experts team (JVET) has recently finalized a next-generation open-source video codec, called versatile video coding (VVC). The new standard presents a higher gain in the run time and rate compressions. Based on the reference software (VTM, VVC Test Model) of VVC, an optimized encoder was developed these last years resulting in a fast and efficient encoder, called Fraunhofer versatile video encoder (VVenC). Based on the Bjontegaard methodology and the GPROF profiling tool, this paper presents a technical complexity analysis and comparison of both VVC and VVenC. The appropriate comparisons cover the percentage taken by each block in terms of processing time and the resulting whole encoding time. The peak signal-to-noise ratio (PSNR) and bit rate between VVC and VVenC encoders based on the common test conditions manual are also analyzed and compared. The profiling results show that the VVenC encoder presents a maximum gain of runtime and bit rate of 90% and 20% respectively in classes A and D test sequences, compared to the VVC encoder.
Power allocation in NOMA using sum rate-based dwarf mongoose optimization Thokala, Chiranjeevi; Krishnan, Karthikeyan Santhana; Erroju, Hansika; Minipuri, Sai Keerthi; Gouti, Yogesh Kumar
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 2: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i2.pp683-692

Abstract

The increasing number of consumers with diverse data rate needs is leading to increased heterogeneity in traditional cellular networks. Nonorthogonal multiple access (NOMA) has emerged as a promising method to serve a large number of users, but research shows that weak users (WU) and strong users (SU) have different throughputs. Intra-group interference reduces WUs throughput due to the superposition of signals. Improper power distribution impacts NOMA performance and lowers the total system rate. The multi-objective sum rate dwarf mongoose optimization algorithm (M-SRDMOA) is implemented as a solution to the NOMA network power allocation problems. The DMOA approach distributes adequate power to all NOMA users to increase the large sum rate. The effectiveness of the M-SRDMOA approach is supported by existing studies on fair NOMA scheduler (FANS) and multi-objective sum rate-based butterfly optimization algorithm (M-SRBOA). The M-SRDMOA’s potential sum rate with an SNR of 9dB and a noise variation=2 is 14.06 bps/Hz, which is high compared to M-SRBOA and FANS.
Islanded microgrid: hybrid energy resilience optimization Gopu, Veeranjaneyulu; Nagaraj, Mudakapla Shadaksharappa
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 2: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i2.pp693-703

Abstract

To maintain a dependable and sustainable power supply in a microgrid system, it is crucial to combine renewable energy sources with hybrid energy backup. To achieve maximum output power from solar source, a high gain DC-DC boost converter is managed using the dual Kalman filter based perturb and observe approach. A sliding mode current controller at a three phase inverter with an LC filter is intended to follow an undisturbed reference voltage. To effectively manage the power flow and optimize the utilization of available resources, a robust power management algorithm is required. The novel power management algorithm for a solo operated renewable distribution generation unit with hybrid energy backup in a microgrid is introduced. The algorithm aims to dynamically allocate power among various sources, storage systems, and loads, considering their characteristics and the overall system constraints. The algorithm utilizes sliding mode control techniques to regulate the current flow from the renewable generator and effectively manage the power allocation among different energy sources, storage systems, and loads.
Major depressive disorder: early detection using deep learning and pupil diameter Mohamed, Islam Ismail; El-Wakad, Mohamed Tarek; Shafie, Khaled Abbas; Aboamer, Mohamed A.; Rahman Mohamed, Nader A.
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 2: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i2.pp916-932

Abstract

Major depressive disorder stands as a highly prevalent mental disorder on a global scale. Detecting depression at its early stages holds paramount importance for effective treatment. However, due to the coexistence of depression with other conditions and the subjective nature of diagnosis, early identification poses a significant challenge. In recent times, machine learning techniques have emerged as valuable tools for the development of automated depression estimation systems, aiding in the diagnostic process. In this particular study, a deep learning approach utilizing pupil diameter was employed to distinguish between individuals diagnosed with depression and those who are considered mentally healthy. Pupillometric recordings were collected from a total of 58 individuals, comprising 29 healthy individuals and 29 individuals diagnosed with depression. Pupil size was recorded every 4 ms. The performance of three pretrained convolutional neural networks (GoogLeNet, SqueezeNet, and AlexNet) was evaluated for depression classification using the pupil size data. The highest accuracy of 98.28% was obtained with AlexNet. This finding highlights the potential of utilizing pupil diameter as a reliable indicator for objectively measuring depression.
Lightweight log-monitoring-based mitigation tool against WLAN attacks Saifan, Ramzi; Radi, Mohammad; Al-Dabbagh, Hamsa; Mansour, Badr
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 2: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i2.pp1061-1072

Abstract

Wireless network attacks are some of the most common network security threats dealt with daily. Their ease of execution and effectiveness make them commonplace within most public networks. The goal of this paper is to develop a tool which provides defenses against these attacks, one which can also generate the attacks to test its own effectiveness in defending against them. The research involved the design, testing, and implementation of attacks/defenses tool, which benefits from a user-friendly user interface that simplifies the testing process. The attacks were generated using existing tools, linked to one central interface. The defense methodology was script-based and created entirely from scratch. It was also linked to a single interface which continuously monitors logs to detect and prevent attacks in an efficient timely manner. The results showed that the proposed defenses to the studied wireless attacks were effective at mitigation, or outright prevention. They were also more lightweight than existing solutions, making them more appealing for less powerful hardware.

Filter by Year

2024 2024


Filter By Issues
All Issue Vol 40, No 2: November 2025 Vol 40, No 1: October 2025 Vol 39, No 3: September 2025 Vol 39, No 2: August 2025 Vol 39, No 1: July 2025 Vol 38, No 3: June 2025 Vol 38, No 2: May 2025 Vol 38, No 1: April 2025 Vol 37, No 3: March 2025 Vol 37, No 2: February 2025 Vol 37, No 1: January 2025 Vol 36, No 3: December 2024 Vol 36, No 2: November 2024 Vol 36, No 1: October 2024 Vol 35, No 3: September 2024 Vol 35, No 2: August 2024 Vol 35, No 1: July 2024 Vol 34, No 3: June 2024 Vol 34, No 2: May 2024 Vol 34, No 1: April 2024 Vol 33, No 3: March 2024 Vol 33, No 2: February 2024 Vol 33, No 1: January 2024 Vol 32, No 3: December 2023 Vol 32, No 1: October 2023 Vol 31, No 3: September 2023 Vol 31, No 2: August 2023 Vol 31, No 1: July 2023 Vol 30, No 3: June 2023 Vol 30, No 2: May 2023 Vol 30, No 1: April 2023 Vol 29, No 3: March 2023 Vol 29, No 2: February 2023 Vol 29, No 1: January 2023 Vol 28, No 3: December 2022 Vol 28, No 2: November 2022 Vol 28, No 1: October 2022 Vol 27, No 3: September 2022 Vol 27, No 2: August 2022 Vol 27, No 1: July 2022 Vol 26, No 3: June 2022 Vol 26, No 2: May 2022 Vol 26, No 1: April 2022 Vol 25, No 3: March 2022 Vol 25, No 2: February 2022 Vol 25, No 1: January 2022 Vol 24, No 3: December 2021 Vol 24, No 2: November 2021 Vol 24, No 1: October 2021 Vol 23, No 3: September 2021 Vol 23, No 2: August 2021 Vol 23, No 1: July 2021 Vol 22, No 3: June 2021 Vol 22, No 2: May 2021 Vol 22, No 1: April 2021 Vol 21, No 3: March 2021 Vol 21, No 2: February 2021 Vol 21, No 1: January 2021 Vol 20, No 3: December 2020 Vol 20, No 2: November 2020 Vol 20, No 1: October 2020 Vol 19, No 3: September 2020 Vol 19, No 2: August 2020 Vol 19, No 1: July 2020 Vol 18, No 3: June 2020 Vol 18, No 2: May 2020 Vol 18, No 1: April 2020 Vol 17, No 3: March 2020 Vol 17, No 2: February 2020 Vol 17, No 1: January 2020 Vol 16, No 3: December 2019 Vol 16, No 2: November 2019 Vol 16, No 1: October 2019 Vol 15, No 3: September 2019 Vol 15, No 2: August 2019 Vol 15, No 1: July 2019 Vol 14, No 3: June 2019 Vol 14, No 2: May 2019 Vol 14, No 1: April 2019 Vol 13, No 3: March 2019 Vol 13, No 2: February 2019 Vol 13, No 1: January 2019 Vol 12, No 3: December 2018 Vol 12, No 2: November 2018 Vol 12, No 1: October 2018 Vol 11, No 3: September 2018 Vol 11, No 2: August 2018 Vol 11, No 1: July 2018 Vol 10, No 3: June 2018 Vol 10, No 2: May 2018 Vol 10, No 1: April 2018 Vol 9, No 3: March 2018 Vol 9, No 2: February 2018 Vol 9, No 1: January 2018 Vol 8, No 3: December 2017 Vol 8, No 2: November 2017 Vol 8, No 1: October 2017 Vol 7, No 3: September 2017 Vol 7, No 2: August 2017 Vol 7, No 1: July 2017 Vol 6, No 3: June 2017 Vol 6, No 2: May 2017 Vol 6, No 1: April 2017 Vol 5, No 3: March 2017 Vol 5, No 2: February 2017 Vol 5, No 1: January 2017 Vol 4, No 3: December 2016 Vol 4, No 2: November 2016 Vol 4, No 1: October 2016 Vol 3, No 3: September 2016 Vol 3, No 2: August 2016 Vol 3, No 1: July 2016 Vol 2, No 3: June 2016 Vol 2, No 2: May 2016 Vol 2, No 1: April 2016 Vol 1, No 3: March 2016 Vol 1, No 2: February 2016 Vol 1, No 1: January 2016 Vol 16, No 3: December 2015 Vol 16, No 2: November 2015 Vol 16, No 1: October 2015 Vol 15, No 3: September 2015 Vol 15, No 2: August 2015 Vol 15, No 1: July 2015 Vol 14, No 3: June 2015 Vol 14, No 2: May 2015 Vol 14, No 1: April 2015 Vol 13, No 3: March 2015 Vol 13, No 2: February 2015 Vol 13, No 1: January 2015 Vol 12, No 12: December 2014 Vol 12, No 11: November 2014 Vol 12, No 10: October 2014 Vol 12, No 9: September 2014 Vol 12, No 8: August 2014 Vol 12, No 7: July 2014 Vol 12, No 6: June 2014 Vol 12, No 5: May 2014 Vol 12, No 4: April 2014 Vol 12, No 3: March 2014 Vol 12, No 2: February 2014 Vol 12, No 1: January 2014 Vol 11, No 12: December 2013 Vol 11, No 11: November 2013 Vol 11, No 10: October 2013 Vol 11, No 9: September 2013 Vol 11, No 8: August 2013 Vol 11, No 7: July 2013 Vol 11, No 6: June 2013 Vol 11, No 5: May 2013 Vol 11, No 4: April 2013 Vol 11, No 3: March 2013 Vol 11, No 2: February 2013 Vol 11, No 1: January 2013 Vol 10, No 8: December 2012 Vol 10, No 7: November 2012 Vol 10, No 6: October 2012 Vol 10, No 5: September 2012 Vol 10, No 4: August 2012 Vol 10, No 3: July 2012 More Issue