cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Electrical Engineering and Computer Science
ISSN : 25024752     EISSN : 25024760     DOI : -
Core Subject :
Arjuna Subject : -
Articles 9,138 Documents
Convolutional neural network hyperparameters for face emotion recognition using genetic algorithm Muhammad Sam'an; Safuan Safuan; Muhammad Munsarif
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 1: January 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i1.pp442-449

Abstract

The development of artificial intelligence in facial emotion recognition (FER) is rapidly growing and has been widely applied in various fields. Deep learning (DL) techniques with evolutionary algorithms have become the preferred choice for solving various security, health, gaming, and other related problems. This research proposes the use of a genetic algorithm (GA) as the main method to optimize hyperparameters in the convolutional neural network (CNN) model for FER. The required computation time is approximately 37 hours 57 minutes 55 seconds, with generation 3 taking the longest time at around 16 hours 45 minutes 4 seconds. However, generation 3 achieved an accuracy of 76.11%, which is the highest compared to other generations. The results indicate that the more generations are involved, the higher the achievable accuracy. Furthermore, the proposed CNN-GA model in this study outperforms previous models that have been examined. Thus, this study makes a significant contribution to improving the understanding of using GAs to optimize the performance of CNN models for FER.
Gesture recognition technology: a new dimension in human-computer interaction interface Beisov, Nurbol; Madyarova, Gulnar; Kerimbayev, Nurassyl
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 2: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i2.pp1311-1324

Abstract

Development of an interface for intelligent gesture control to improve user experience and increase the efficiency of interaction with a computer. This paper proposes a gesture recognition system based on artificial intelligence using convolutional neural networks (CNN). The system comprises three stages: pre-processing, optimal frame determination, and gesture category identification. The extracted features used are independent of movement, scaling, and rotation, providing greater flexibility to the system. The suggested gesture control technology, known as Kazakh Sign Language (KSL) for Kazakh alphabets, eliminates the need for additional devices, enabling users to interact with the system naturally. Experiments demonstrated that the proposed KSL system can accurately recognize Kazakh language alphabet letters with a high precision of 97.3%, owing to the utilization of artificial intelligence and CNN to enhance the accuracy and effectiveness of gesture control. Gestures, a type of visual formation, are perceivable by computers through machine learning models. The selection of methods and systems for recognizing Kazakh sign language gestures was accompanied by addressing various challenges related to language-specific orthographic and gestural features. The developed gesture control interface for human-computer interaction is applied in the field of inclusive education, aiming to assist deaf and hard-of-hearing children in learning sign language.
Hyperspectral image construction in different spectral bands of tea leafs for identifying the tea type using O-ConvNet-RF model Gongalla, Likitha; Bordoloi, Monali
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 1: July 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i1.pp301-309

Abstract

Tea, a commonly consumed beverage, is susceptible to being sold in adulterated or expired forms by third-party vendors. Hyperspectral imaging across different wavelength bands has proven to precisely assess the diverse types of tea and their corresponding financial gains. This study aims to employ a deep learning methodology in conjunction with hyperspectral imaging for efficiently classifying tea leaves. A novel approach is proposed, wherein a waveband convolutional neural network is utilized to generate hyper spectral images of tea leaf samples with enhanced resolution. The model known as optimized-convolutional neural network-random forest O- (ConvNet-RF) demonstrated exceptional performance, achieving high accuracy, impressive recall, F1 score, and notable sensitivity rate, outperforming existing alternative methods. The tea leaf types, namely green, yellow, and black, were accurately identified using a combination of the random forest (RF) model and the O-ConvNet-RF model. The tree-based classification method for the identification of tea leaves demonstrated superior performance as compared to alternative machine learning models. In general, this study presents a successful methodology for the classification of tea leaves, with potential implications for consumer processing and distributor profit analysis.
In-depth exploration of digital image watermarking with discrete cosine transform and discrete wavelet transform Md. Apu Hosen; Shahadat Hoshen Moz; Sk. Shalauddin Kabir; Md. Nasim Adnan; Syed Md. Galib
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 1: January 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i1.pp581-590

Abstract

Digital image watermarking is a crucial technique used to protect the integrity and ownership of digital images by embedding imperceptible watermarks into the image content. This review concentrates on the utilization of discrete cosine transform (DCT) and discrete wavelet transform (DWT) in digital image watermarking schemes. DCT, widely used in image compression like JPEG, is an attractive choice for watermarking, modifying DCT coefficients with minimal impact on image quality. On the other hand, DWT offers multiresolution representation, enabling better localization and robustness against attacks. DWT-based methods use wavelet coefficients to embed watermarks in specific frequency bands or image regions. The review examines the strengths and weaknesses of DCT and DWT in digital image watermarking, exploring algorithms and approaches proposed in the literature. It also addresses challenges like attacks, synchronization, and robustness to image processing. Additionally, a comparative analysis of DCT and DWT-based methods considers imperceptibility, robustness, capacity, and computational complexity. By offering valuable insights, this review aids researchers and practitioners in implementing secure and efficient digital image watermarking solutions.
Novel broadband circularly polarized pentagonal printed antenna design for wireless power transmission applications Walid En-Naghma; Hanan Halaq; Abdelghani El Ougli
Indonesian Journal of Electrical Engineering and Computer Science Vol 32, No 3: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v32.i3.pp1434-1441

Abstract

This paper provides a new conception for a microstrip patch antenna array that operates in a circularly polarized manner for wireless power transmission (WPT) at 2.45 GHz. The proposed conception combines four pentagonal patches and the defected ground structure (DGS) method. The antenna array with a dielectric constant of 4.4 and a tangential loss of 0.025 is printed on a FR4 where its thickness is about 1.58 mm. The developed design aims to optimize the antenna array performance. Th e main contribution, to the telecommunications and WPT fields, is to achieve a maximum energy transfer with low losses, while also ensuring adequate adaptation to the excitation port. To prove the effectiveness of this design, simulation results were obtai ned using computer simulation technology microwave studio (CST MWS) software and validated by another solver high - frequency structure simulator (HFSS). Simulation results are presented and compared with those obtained using existing conceptions in the lite rature. The proposed design has proven to be very effective in achieving the intended objectives, which makes this design very good for radiofrequency (RF) energy collection and its various applications to power a variety of devices without harming our pla net.
Comparing hybrid models for recognising objects in thermal images at nighttime Maheswari Bandi; Reeja Sundaran Rajakumari
Indonesian Journal of Electrical Engineering and Computer Science Vol 34, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v34.i3.pp1823-1831

Abstract

This research aims to revolutionize urban object recognition by developing cloud-based Python programs using intelligent algorithms. Unlike current models that focus on colour enhancement in nighttime thermal images, this work addresses the critical challenge of accurate object detection in urban landscapes. The proposed method incorporates a binary generative adversarial network (GAN) generator that can switch bidirectionally between daytime colour (DC) and nighttime infrared (NTIR) images. memory-based visual image memory (MVAM), system extracts important descriptive information from urban landscape images, reducing problems related to small sample sizes. This discussion presents a comprehensive improvement and evaluation of a deep learning image classification pipeline using Google Colab, demonstrating advanced image processing. Using TensorFlow, Keres and scikit image libraries combined with advanced algorithms such as DenseNet121 and MobileNetV2 presents a clear approach. We created a Bidirectional GAN + MVAM for object recognition in this work. Our method performed well, with an accuracy of 81.43%, precision of 51.16, recall of 50.11, and F-score of 46.37. The systematic presentation of the code presents a careful strategy to ensure optimal performance, stability, and efficiency of deep learning and image processing tasks.
Deep neural networks optimization for resource-constrained environments: techniques and models Raafi Careem; Md Gapar Md Johar; Ali Khatibi
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 3: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i3.pp1843-1854

Abstract

This paper aims to present a comprehensive review of advanced techniques and models with a specific focus on deep neural network (DNN) for resource-constrained environments (RCE). The paper contributes by highlighting the RCE devices, analyzing challenges, reviewing a broad range of optimization techniques and DNN models, and offering a comparative assessment. The findings provide potential optimization techniques and recommend a baseline model for future development. It encompasses a broad range of DNN optimization techniques, including network pruning, weight quantization, knowledge distillation, depthwise separable convolution, residual connections, factorization, dense connections, and compound scaling. Moreover, the review analyzes the established optimization models which utilizes the above optimization techniques. A comprehensive analysis is conducted for each technique and model, considering its specific attributes, usability, strengths, and limitations in the context of effective deployment in RCEs. The review also presents a comparative assessment of advanced DNN models’ deployment for image classification, employing key evaluation metrics such as accuracy and efficiency factors like memory and inference time. The article concludes with the finding that combining depthwise separable convolution, weight quantization, and pruning represents potential optimization techniques, while also recommending EfficientNetB1 as a baseline model for the future development of optimization models in RCE image classification. 
Use of explainable AI to interpret the results of NLP models for sentimental analysis Bidve, Vijaykumar; Shafi, Pathan Mohd; Sarasu, Pakiriswamy; Pavate, Aruna; Shaikh, Ashfaq; Borde, Santosh; Pratap Singh, Veer Bhadra; Raut, Rahul
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 1: July 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i1.pp511-519

Abstract

The use of artificial intelligence (AI) systems is significantly increased in the past few years. AI system is expected to provide accurate predictions and it is also crucial that the decisions made by the AI systems are humanly interpretable i.e. anyone must be able to understand and comprehend the results produced by the AI system. AI systems are being implemented even for simple decision support and are easily accessible to the common man on the tip of their fingers. The increase in usage of AI has come with its own limitation, i.e. its interpretability. This work contributes towards the use of explainability methods such as local interpretable model-agnostic explanations (LIME) to interpret the results of various black box models. The conclusion is that, the bidirectional long short-term memory (LSTM) model is superior for sentiment analysis. The operations of a random forest classifier, a black box model, using explainable artificial intelligence (XAI) techniques like LIME is used in this work. The features used by the random forest model for classification are not entirely correct. The use of LIME made this possible. The proposed model can be used to enhance performance, which raises the trustworthiness and legitimacy of AI systems.
Efficient number theoretic transform accelerator for CRYSTALS-Kyber Toan Nguyen; Hoang Anh Pham; Hung Nguyen; Trang Hoang; Linh Tran
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 2: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i2.pp795-803

Abstract

The national institute of standards and technology (NIST) has presented its draft of the module-lattice-based key-encapsulation mechanism standard (MLBKEMS), choosing cryptographic suite for algebraic lattices (CRYSTALS)- Kyber as the base encryption. Existing hardware implementations of modern cryptography will need to process the new standard efficiently. The primary process in CRYSTALS-Kyber key-encapsulation mechanism (KEM) is the number theoretic transform (NTT), which requires heavy computing power. This paper contributes an efficient hardware accelerator for NTT and inverse NTT (INTT) by CRYSTAL-Kyber parameters. The proposed design utilizes the K-RED algorithm for reducing polynomial multiplication. It also incorporates the BrentKung method for efficient modular addition and subtraction operation with an address generator to control the sequences of computation. On the Xilinx Artix 7 field programmable gate array (FPGA), our design achieves 262 MHz clock speed, utilizing only 1405 LUTs.
Enhanced negation handling for sentiment analysis on Twitter using deep neural networks Mamatha Mylarappa; Shiva Kumar B. N; Thriveni J. Gowda; Venugopal K. Rajuk
Indonesian Journal of Electrical Engineering and Computer Science Vol 32, No 3: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v32.i3.pp1736-1745

Abstract

Sentiment analysis is a tool to identify and measure the emotion in a piece of text. Negation handling is an important aspect of natural language processing (NLP) for Twitter data. It is a process of correctly interpreting the sentences containing negation words, such as, "never", "no", "neither" and so on. Negation words are used in machine learning to express negative sentiment or indicate the absence of something. In this article, a negation handling technique using deep learning models. Artificial neural networks (ANNs) and convolutional neural networks (CNNs) for classification is proposed. The system is evaluated on SemEval-2017 dataset. The classification performance is improved by using ANN and CNN on the negative tweets. The study aims to improve the classification accuracy by considering negation words in the text. The paper compares the performance of ANNs and CNNs in handling negation words and evaluates them on the tweets data. This study provides insights into the effectiveness of using deep learning techniques for negation handling in sentiment analysis and highlights the importance of considering negation words in the text for improved sentiment analysis performance. The proposed negation strategy attains a superior performance accuracy over machine learning models by preventing misclassified tweets.

Filter by Year

2012 2026


Filter By Issues
All Issue Vol 41, No 1: January 2026 Vol 40, No 3: December 2025 Vol 40, No 2: November 2025 Vol 40, No 1: October 2025 Vol 39, No 3: September 2025 Vol 39, No 2: August 2025 Vol 39, No 1: July 2025 Vol 38, No 3: June 2025 Vol 38, No 2: May 2025 Vol 38, No 1: April 2025 Vol 37, No 3: March 2025 Vol 37, No 2: February 2025 Vol 37, No 1: January 2025 Vol 36, No 3: December 2024 Vol 36, No 2: November 2024 Vol 36, No 1: October 2024 Vol 35, No 3: September 2024 Vol 35, No 2: August 2024 Vol 35, No 1: July 2024 Vol 34, No 3: June 2024 Vol 34, No 2: May 2024 Vol 34, No 1: April 2024 Vol 33, No 3: March 2024 Vol 33, No 2: February 2024 Vol 33, No 1: January 2024 Vol 32, No 3: December 2023 Vol 32, No 1: October 2023 Vol 31, No 3: September 2023 Vol 31, No 2: August 2023 Vol 31, No 1: July 2023 Vol 30, No 3: June 2023 Vol 30, No 2: May 2023 Vol 30, No 1: April 2023 Vol 29, No 3: March 2023 Vol 29, No 2: February 2023 Vol 29, No 1: January 2023 Vol 28, No 3: December 2022 Vol 28, No 2: November 2022 Vol 28, No 1: October 2022 Vol 27, No 3: September 2022 Vol 27, No 2: August 2022 Vol 27, No 1: July 2022 Vol 26, No 3: June 2022 Vol 26, No 2: May 2022 Vol 26, No 1: April 2022 Vol 25, No 3: March 2022 Vol 25, No 2: February 2022 Vol 25, No 1: January 2022 Vol 24, No 3: December 2021 Vol 24, No 2: November 2021 Vol 24, No 1: October 2021 Vol 23, No 3: September 2021 Vol 23, No 2: August 2021 Vol 23, No 1: July 2021 Vol 22, No 3: June 2021 Vol 22, No 2: May 2021 Vol 22, No 1: April 2021 Vol 21, No 3: March 2021 Vol 21, No 2: February 2021 Vol 21, No 1: January 2021 Vol 20, No 3: December 2020 Vol 20, No 2: November 2020 Vol 20, No 1: October 2020 Vol 19, No 3: September 2020 Vol 19, No 2: August 2020 Vol 19, No 1: July 2020 Vol 18, No 3: June 2020 Vol 18, No 2: May 2020 Vol 18, No 1: April 2020 Vol 17, No 3: March 2020 Vol 17, No 2: February 2020 Vol 17, No 1: January 2020 Vol 16, No 3: December 2019 Vol 16, No 2: November 2019 Vol 16, No 1: October 2019 Vol 15, No 3: September 2019 Vol 15, No 2: August 2019 Vol 15, No 1: July 2019 Vol 14, No 3: June 2019 Vol 14, No 2: May 2019 Vol 14, No 1: April 2019 Vol 13, No 3: March 2019 Vol 13, No 2: February 2019 Vol 13, No 1: January 2019 Vol 12, No 3: December 2018 Vol 12, No 2: November 2018 Vol 12, No 1: October 2018 Vol 11, No 3: September 2018 Vol 11, No 2: August 2018 Vol 11, No 1: July 2018 Vol 10, No 3: June 2018 Vol 10, No 2: May 2018 Vol 10, No 1: April 2018 Vol 9, No 3: March 2018 Vol 9, No 2: February 2018 Vol 9, No 1: January 2018 Vol 8, No 3: December 2017 Vol 8, No 2: November 2017 Vol 8, No 1: October 2017 Vol 7, No 3: September 2017 Vol 7, No 2: August 2017 Vol 7, No 1: July 2017 Vol 6, No 3: June 2017 Vol 6, No 2: May 2017 Vol 6, No 1: April 2017 Vol 5, No 3: March 2017 Vol 5, No 2: February 2017 Vol 5, No 1: January 2017 Vol 4, No 3: December 2016 Vol 4, No 2: November 2016 Vol 4, No 1: October 2016 Vol 3, No 3: September 2016 Vol 3, No 2: August 2016 Vol 3, No 1: July 2016 Vol 2, No 3: June 2016 Vol 2, No 2: May 2016 Vol 2, No 1: April 2016 Vol 1, No 3: March 2016 Vol 1, No 2: February 2016 Vol 1, No 1: January 2016 Vol 16, No 3: December 2015 Vol 16, No 2: November 2015 Vol 16, No 1: October 2015 Vol 15, No 3: September 2015 Vol 15, No 2: August 2015 Vol 15, No 1: July 2015 Vol 14, No 3: June 2015 Vol 14, No 2: May 2015 Vol 14, No 1: April 2015 Vol 13, No 3: March 2015 Vol 13, No 2: February 2015 Vol 13, No 1: January 2015 Vol 12, No 12: December 2014 Vol 12, No 11: November 2014 Vol 12, No 10: October 2014 Vol 12, No 9: September 2014 Vol 12, No 8: August 2014 Vol 12, No 7: July 2014 Vol 12, No 6: June 2014 Vol 12, No 5: May 2014 Vol 12, No 4: April 2014 Vol 12, No 3: March 2014 Vol 12, No 2: February 2014 Vol 12, No 1: January 2014 Vol 11, No 12: December 2013 Vol 11, No 11: November 2013 Vol 11, No 10: October 2013 Vol 11, No 9: September 2013 Vol 11, No 8: August 2013 Vol 11, No 7: July 2013 Vol 11, No 6: June 2013 Vol 11, No 5: May 2013 Vol 11, No 4: April 2013 Vol 11, No 3: March 2013 Vol 11, No 2: February 2013 Vol 11, No 1: January 2013 Vol 10, No 8: December 2012 Vol 10, No 7: November 2012 Vol 10, No 6: October 2012 Vol 10, No 5: September 2012 Vol 10, No 4: August 2012 Vol 10, No 3: July 2012 More Issue