cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Electrical Engineering and Computer Science
ISSN : 25024752     EISSN : 25024760     DOI : -
Core Subject :
Arjuna Subject : -
Articles 9,138 Documents
Improved direct control of single stage photovoltaic powred system Chouaib, Rahli; Ouada, Mehdi; Ryad, Mebarek Abdesslam; Saad, Salah
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1389-1399

Abstract

This paper introduces a novel direct control quasi-Z-source inverter (qZSI) topology as a viable alternative to conventional two-stage converters in photovoltaic (PV) systems. The proposed control strategy effectively merges duty cycle and modulation index within a space vector pulse width modulation (SVPWM) framework for both DC and AC control. To assess the system’s performance under diverse weather conditions, the INC and P&O maximum power point tracking maximum power point tracking (MPPT) algorithms are employed. Rigorous simulations conducted using MATLAB/Simulink demonstrate the proposed method’s ability to achieve multi-objective optimization of PV systems, enhancing overall system efficiency and reliability.
Improvement of horizontal streak on disparity map thru parameter optimization for stereo vision algorithm Yeou Wei, Melvin Gan; Hamzah, Rostam Affendi; Nik Anwar, Nik Syahrim; Herman, Adi Irwan; Jamil Alsayaydeh, Jamil Abedalrahim
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i3.pp1886-1894

Abstract

In this paper, an improved local based stereo vision disparity map (SVDM) algorithm is proposed. The proposed local based SVDM algorithm include four stages and they are matching cost computation, cost aggregation disparity optimization and disparity refinement. The matching cost computation started by combining pixel to pixel matching techniques, which are absolute difference (AD) and gradient matching (GM) in producing the initial disparity map. Next, the cost aggregation uses minimum spanning tree (MST) segmentation, which equipped with edge preserving properties and noise filtering. Then, disparity optimization uses local approach with winner-take-all (WTA) technique. At the final stage, disparity refinement uses bilateral filter (BF) with weighted median (WM), which can improve the disparity map through noise removing and edges preserving. Then, the research continues to optimize the proposed local based SVDM algorithm through parameters optimization in obtaining the final disparity map. Here, multiple parameters from the proposed SVDM algorithm are manipulated and they are constant values for GM and several constant parameters in BF. By selecting the optimum parameter values, the performance of the proposed SVDM algorithm increased, especially robustness towards the horizontal streaks.
Electrocardiogram reconstruction based on Hermite interpolating polynomial with Chebyshev nodes Ray, Shashwati; Chouhan, Vandana
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 2: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i2.pp837-845

Abstract

Electrocardiogram (ECG) signals generate massive volume of digital data, so they need to be suitably compressed for efficient transmission and storage. Polynomial approximations and polynomial interpolation have been used for ECG data compression where the data signal is described by polynomial coefficients only. Here, we propose approximation using hermite polynomial interpolation with chebyshev nodes for compressing ECG signals that consequently denoises them too. Recommended algorithm is applied on various ECG signals taken from MIT-BIH arrhythmia database without any additional noise as the signals are already contaminated with noise. Performance of the proposed algorithm is evaluated using various performance metrics and compared with some recent compression techniques. Experimental results prove that the proposed method efficiently compresses the ECG signals while preserving the minute details of important morphological features of ECG signal required for clinical diagnosis.
Dynamic long short-term memory model for enhanced product recommendations in e-commerce Bhogan, Snehal; Rajpurohit, Vijay S.; Sannakki, Sanjeev S.
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1866-1875

Abstract

Recommendation systems are pivotal for personalized user experiences, employing algorithms to predict and suggest items aligned with user preferences. Deep learning (DL) models, such as recurrent neural networks (RNNs) and long short-term memory networks (LSTMs), excel in capturing sequential dependencies, enhancing recommendation accuracy. However, challenges persist in session-based recommendation systems, particularly with gradient descent and class imbalances. Addressing these challenges, this work introduces dynamic LSTM (D-LSTM), a novel DL-based recommendation system tailored for dynamic E-commerce environments. The primary objective is to optimize recommendation accuracy by effectively capturing temporal dependencies within user sessions. The methodology involves the integration of D-LSTM with weight matrix optimization and a Bayesian personalized ranking (BPR) adaptable learning rate optimizer to enhance learning efficiency. Experimental results demonstrate the efficacy of D-LSTM, showing significant improvements over existing models. Specifically, comparisons with the hybrid time-centric prediction (HTCP) model reveal a performance enhancement of 19.4%, 17.2%, 35.41%, and 21.99% for hit-rate (HR) and mean reciprocal rank (MRR) in 10k and 20k recommendation sets using the Tmall dataset. These findings underscore the superior performance of D-LSTM, highlighting its potential to advance personalized recommendations in dynamic E-commerce settings.
Optimizing blockchain for healthcare IoT: a practical guide to navigating scalability, privacy, and efficiency trade-offs Alhija, Mwaffaq Abu; Al-Baik, Osama; Hussein, Abdelrahman; Abdeljaber, Hikmat
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i3.pp1773-1785

Abstract

The adoption of blockchain technology provides significant disruptive benefits to internet-of-things (IoT) applications in healthcare in vital aspects like security, integrity, transparency, and efficiency. Nevertheless, in order to fully realize the potential of blockchain-driven solutions, healthcare organizations have to address intricate compromises between essential factors including scalability, privacy and resource utilization considering that the data sensitivity alongside strict regulatory compliance requirements characterize this sector. This research discusses the fundamental aspects of these trade-offs, including the range of consensus protocols (e.g. proof-of-work, proof-of-stake) and cryptographic techniques (e.g. zero-knowledge proofs, homomorphic encryption). A systematic choice matrix is created, which relates specific use cases of the healthcare IoT to the optimal tailored blockchain structures on such critical metrics as transaction volume, frequency, privacy level and resource restrictions. The suggested framework provides solid, actionable recommendations to healthcare organizations in order to help them benefit from the enormous promise of the blockchain for connected IoT healthcare by finding a balance between decentralization advantages and performance, security and compliance requirements.
Enhancing surface water quality prediction efficiency in northeastern thailand using machine learning Uypatchawong, Surasit; Chanamarn, Nipaporn
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 2: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i2.pp1189-1198

Abstract

Water is the most vital resource for life and is necessary for most living creatures, including humans, to survive. Three rivers’ surface water quality has been predicted by this study: the Chi river, the Mun river, and the Songkhram river. In the northeastern region of Thailand. The dataset is 881 samples and 13 factors. This study investigated various machine learning methods for predicting water quality, including neural networks (NN), support vector machines (SVM), decision trees (DT), Naive Bayes (NB), and K-nearest neighbors (KNN). Furthermore, this study was conducted to find suitable factors using correlation based feature selection, correlation coefficient, and information gain. And optimize the prediction model using the Bagging Approach. The result is found that the bagging model using the DT technique (BaggingDT) has better performance than all models with an accuracy value equal to 98.64%, precision value equal to 98.70%, recall value equal to 98.60%, F-measure value equal to 98.60% and RMSE value equal to 0.0961. The obtained factors and the most appropriate model can be used to develop a surface water quality standard predicting system.
Spiking neural network with blockchain for tampered image detection using forensic steganography images Basavanyappa, Gurumurthy Shikaripura; Danti, Ajit
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 1: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i1.pp477-485

Abstract

Accurate tools are required to acknowledge misleading images in order to maintain image legitimacy, and these tools must allow for legal operations on images. Additionally, after posting their images to the Internet, image owners lose rights over the images because there are no measures in place to safeguard them from misuse. One of the most well-liked techniques for addressing copyright disputes is the use of steganography technologies. The embedded steganography images can, sadly, be easily altered or deleted. To address this problem, this work presents the spiking neural network (SNN) with blockchain for tampered image detection utilizing forensic steganography images. Forensic steganography images that have been altered can be found with this SNN. Using steganography images from the database, SNN is trained in this model. The blockchain stores the owners’ access policies. The Python platform is used to implement the proposed strategy. F-measure, specificity, accuracy, precision, recall false positive rate (FPR), and false negative rate (FNR) are used to gauge how well the proposed approach performs. When compared to state-of-the-art approaches, the proposed approach obtained an impressive rise of 98.65%, in classification accuracy.
Space vector pulse width modulation realization for three-phase voltage source inverter Palanisamy, Ramasamy; Santhakumari, Valarmathi Thangamani; Venkatarajan, Shanmugasundaram; Hemalatha, Selvaraj; Hepzibah, Albert Alice; Ramkumar, Ravindran; Sugavanam, Vidyasagar
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1976-1984

Abstract

This paper presents the implementation of space vector pulse width modulation (SVPWM) for a three-phase voltage source inverter (VSI). SVPWM is a technique used to control the output voltage of VSIs with improved efficiency and precision. The abstract outlines the key steps involved in implementing SVPWM, including reference signal clarification, sector identification, determination of voltage vectors, and switching state calculation. This proposed system provides improved output voltage of the inverter, minimized voltage stress across the switches and reduced total harmonic distortion and electromagnetic interference. The proposed implementation aims to enhance the performance of three-phase VSIs in various applications, such as motor drives, renewable energy systems, and power converters. The simulation results of proposed system are verified using MATLAB Simulink.
Deep transfer learning classification of apple fruit diseases Loutfy, Shaimaa Kamal; Rahouma, Kamel Hussein
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i3.pp1556-1564

Abstract

This paper applies deep convolution neural networks (DCNN) to apple fruit disease classification. Twelve DCNN methods (SqueezeNet, GoogleNet, InceptionV3, DenseNet201, ReaNet50, ResNet101, Xception, InceptionResnetV2, EfficientnetB0, AlexNet, VGG16, and VGG19) have been used. These methods have been trained to classify apples into four categories: normal, blotch, rot, and scab. A dataset of 5179 images, including 3472 for normal, 171 for blotch, 1166 for rot, and 370 for scab, has been used. A practical test on 120 images (30 for each category) has been applied. Seven of these DCNNs—InceptionV3, DenseNet201, ResNet101, ResNet50, GoogleNet, AlexNet, and VGG16—have the best accuracy. InceptionV3 is the highest. It has achieved an accuracy of 100% for all categories. The used dataset is unbalanced and small. So, it's necessary to use data augmentation to overcome any overfitting that may cause. After applying data augmentation, the dataset is balanced and contains 13888 images (3472 for each category). The seven DCNNs are retrained by the balanced dataset and retested by the same 120 images. All DCNN's accuracy has enhanced except InceptionV3, which has decreased. On the other hand, RasNet101 has achieved an accuracy of 100% for all categories. Therefore, ResNet101 has been recommended for apple fruit disease classification.
Enhanced Bengali audio categorization using audio segmentation and deep learning Khan, Niaz Ashraf; Bin Hafiz, Md. Ferdous
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 2: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i2.pp952-960

Abstract

This paper presents an enhanced approach for classifying Bengali songs into different genres by leveraging feature importance analysis and deep learning techniques. The research addresses the challenge of limited data points in the Bengali Song Dataset by employing strategies, including audio segmentation and feature importance analysis, to enhance model performance. Multiple machine learning and deep learning architectures are evaluated to identify the most effective models for Bengali song classification. Additionally, this research conducts feature importance analysis to identify significant audio features contributing to classification accuracy. The best-performing deep learning model achieves an impressive validation accuracy of 94.17%, showcasing the project efficacy of the proposed methodology. Our findings highlight the effectiveness of our proposed methodology, demonstrating significant improvements in classification accuracy and contributing to advancements in Bengali music classification research.

Filter by Year

2012 2026


Filter By Issues
All Issue Vol 41, No 1: January 2026 Vol 40, No 3: December 2025 Vol 40, No 2: November 2025 Vol 40, No 1: October 2025 Vol 39, No 3: September 2025 Vol 39, No 2: August 2025 Vol 39, No 1: July 2025 Vol 38, No 3: June 2025 Vol 38, No 2: May 2025 Vol 38, No 1: April 2025 Vol 37, No 3: March 2025 Vol 37, No 2: February 2025 Vol 37, No 1: January 2025 Vol 36, No 3: December 2024 Vol 36, No 2: November 2024 Vol 36, No 1: October 2024 Vol 35, No 3: September 2024 Vol 35, No 2: August 2024 Vol 35, No 1: July 2024 Vol 34, No 3: June 2024 Vol 34, No 2: May 2024 Vol 34, No 1: April 2024 Vol 33, No 3: March 2024 Vol 33, No 2: February 2024 Vol 33, No 1: January 2024 Vol 32, No 3: December 2023 Vol 32, No 1: October 2023 Vol 31, No 3: September 2023 Vol 31, No 2: August 2023 Vol 31, No 1: July 2023 Vol 30, No 3: June 2023 Vol 30, No 2: May 2023 Vol 30, No 1: April 2023 Vol 29, No 3: March 2023 Vol 29, No 2: February 2023 Vol 29, No 1: January 2023 Vol 28, No 3: December 2022 Vol 28, No 2: November 2022 Vol 28, No 1: October 2022 Vol 27, No 3: September 2022 Vol 27, No 2: August 2022 Vol 27, No 1: July 2022 Vol 26, No 3: June 2022 Vol 26, No 2: May 2022 Vol 26, No 1: April 2022 Vol 25, No 3: March 2022 Vol 25, No 2: February 2022 Vol 25, No 1: January 2022 Vol 24, No 3: December 2021 Vol 24, No 2: November 2021 Vol 24, No 1: October 2021 Vol 23, No 3: September 2021 Vol 23, No 2: August 2021 Vol 23, No 1: July 2021 Vol 22, No 3: June 2021 Vol 22, No 2: May 2021 Vol 22, No 1: April 2021 Vol 21, No 3: March 2021 Vol 21, No 2: February 2021 Vol 21, No 1: January 2021 Vol 20, No 3: December 2020 Vol 20, No 2: November 2020 Vol 20, No 1: October 2020 Vol 19, No 3: September 2020 Vol 19, No 2: August 2020 Vol 19, No 1: July 2020 Vol 18, No 3: June 2020 Vol 18, No 2: May 2020 Vol 18, No 1: April 2020 Vol 17, No 3: March 2020 Vol 17, No 2: February 2020 Vol 17, No 1: January 2020 Vol 16, No 3: December 2019 Vol 16, No 2: November 2019 Vol 16, No 1: October 2019 Vol 15, No 3: September 2019 Vol 15, No 2: August 2019 Vol 15, No 1: July 2019 Vol 14, No 3: June 2019 Vol 14, No 2: May 2019 Vol 14, No 1: April 2019 Vol 13, No 3: March 2019 Vol 13, No 2: February 2019 Vol 13, No 1: January 2019 Vol 12, No 3: December 2018 Vol 12, No 2: November 2018 Vol 12, No 1: October 2018 Vol 11, No 3: September 2018 Vol 11, No 2: August 2018 Vol 11, No 1: July 2018 Vol 10, No 3: June 2018 Vol 10, No 2: May 2018 Vol 10, No 1: April 2018 Vol 9, No 3: March 2018 Vol 9, No 2: February 2018 Vol 9, No 1: January 2018 Vol 8, No 3: December 2017 Vol 8, No 2: November 2017 Vol 8, No 1: October 2017 Vol 7, No 3: September 2017 Vol 7, No 2: August 2017 Vol 7, No 1: July 2017 Vol 6, No 3: June 2017 Vol 6, No 2: May 2017 Vol 6, No 1: April 2017 Vol 5, No 3: March 2017 Vol 5, No 2: February 2017 Vol 5, No 1: January 2017 Vol 4, No 3: December 2016 Vol 4, No 2: November 2016 Vol 4, No 1: October 2016 Vol 3, No 3: September 2016 Vol 3, No 2: August 2016 Vol 3, No 1: July 2016 Vol 2, No 3: June 2016 Vol 2, No 2: May 2016 Vol 2, No 1: April 2016 Vol 1, No 3: March 2016 Vol 1, No 2: February 2016 Vol 1, No 1: January 2016 Vol 16, No 3: December 2015 Vol 16, No 2: November 2015 Vol 16, No 1: October 2015 Vol 15, No 3: September 2015 Vol 15, No 2: August 2015 Vol 15, No 1: July 2015 Vol 14, No 3: June 2015 Vol 14, No 2: May 2015 Vol 14, No 1: April 2015 Vol 13, No 3: March 2015 Vol 13, No 2: February 2015 Vol 13, No 1: January 2015 Vol 12, No 12: December 2014 Vol 12, No 11: November 2014 Vol 12, No 10: October 2014 Vol 12, No 9: September 2014 Vol 12, No 8: August 2014 Vol 12, No 7: July 2014 Vol 12, No 6: June 2014 Vol 12, No 5: May 2014 Vol 12, No 4: April 2014 Vol 12, No 3: March 2014 Vol 12, No 2: February 2014 Vol 12, No 1: January 2014 Vol 11, No 12: December 2013 Vol 11, No 11: November 2013 Vol 11, No 10: October 2013 Vol 11, No 9: September 2013 Vol 11, No 8: August 2013 Vol 11, No 7: July 2013 Vol 11, No 6: June 2013 Vol 11, No 5: May 2013 Vol 11, No 4: April 2013 Vol 11, No 3: March 2013 Vol 11, No 2: February 2013 Vol 11, No 1: January 2013 Vol 10, No 8: December 2012 Vol 10, No 7: November 2012 Vol 10, No 6: October 2012 Vol 10, No 5: September 2012 Vol 10, No 4: August 2012 Vol 10, No 3: July 2012 More Issue